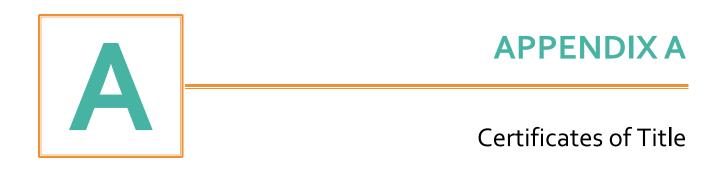


AUGUST 2014 APPENDICES Stantec

Approved by the Muncipal Planning Commission September 9, 2014


Appendices Table of Contents

- APPENDIX A Certificates of Title
- APPENDIX B Transportation Impact Assessment
- APPENDIX C Geotechnical Evaluation
- APPENDIX D Environmental Site Assessment
- APPENDIX E Statement of Justification for Historical Resources Act
- APPENDIX F Wetland Classification and Delineation Assessment
- APPENDIX G BlackWolf Boulevard Storm Water Management Preliminary Design
- APPENDIX H High Intensity Fire Response Analysis City of Lethbridge
- APPENDIX I Gate 1 Sign-Off
- APPENDIX J Gate 2 Sign-Off
- APPENDIX K Gate 3 Sign-Off

BLACKWOLF STAGE 2 OUTLINE PLAN

LAND TITLE CERTIFICATE

S LINC SHORT LEGAL 0022 173 348 4;21;9;17;;13

TITLE NUMBER 821 153 047 A .

LEGAL DESCRIPTION MERIDIAN 4 RANGE 21 TOWNSHIP 9 SECTION 17 LEGAL SUBDIVISION 13 EXCEPTING THEREOUT ALL MINES AND MINERALS AND THE RIGHT TO WORK THE SAME AREA: 16.2 HECTARES (40 ACRES) MORE OR LESS

ESTATE: FEE SIMPLE

MUNICIPALITY: CITY OF LETHBRIDGE

REGISTERED OWNER(S) REGISTRATION DATE(DMY) DOCUMENT TYPE VALUE CONSIDERATION

821 153 047 03/09/1982

\$306,625

OWNERS

THE CITY OF LETHBRIDGE. OF 910 - 4TH AVE. SOUTH, LETHBRIDGE ALBERTA

ENCUMBRANCES, LIENS & INTERESTS

REGISTRATION NUMBER DATE (D/M/Y) PARTICULARS 2834IC . 19/09/1960 UTILITY RIGHT OF WAY GRANTEE - CANADIAN WESTERN NATURAL GAS COMPANY LIMITED. AS TO PORTION OR PLAN:2602IC "0.89 OF AN ACRE" 831 079 200 03/05/1983 UTILITY RIGHT OF WAY GRANTEE - ALBERTA HOME MORTGAGE CORPORATION. AS TO PORTION OR PLAN:8211477 871 177 437 28/09/1987 UTILITY RIGHT OF WAY

(CONTINUED)

ENCUMBRANCES, LIENS & INTERESTS

PAGE 2 # 821 153 047 A .

REGISTRATION

NUMBER DATE (D/M/Y)

PARTICULARS

GRANTEE - THE CITY OF LETHBRIDGE. AS TO PORTION OR PLAN:8711228 (DATA UPDATED BY: 951080304)

TOTAL INSTRUMENTS: 003

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 23 DAY OF APRIL, 2014 AT 03:09 P.M.

ORDER NUMBER: 25796446

CUSTOMER FILE NUMBER:

END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

LAND TITLE CERTIFICATE

s LINC SHORT LEGAL TITLE NUMBER 0022 352 389 4;21;9;17;;12 821 153 047 B . LEGAL DESCRIPTION MERIDIAN 4 RANGE 21 TOWNSHP 9 SECTION 17 LEGAL SUBDIVISION 12 IN THE NORTH WEST QUARTER CONTAINING 16.2 HECTARES (40 ACRES) MORE OR LESS EXCEPTING THEREOUT: UNPATENTED CROWN ROAD SHOWN ON GRANT 804F CONTAINING 0.809 OF A HECTARE (2.00 ACRES) MORE OR LESS EXCEPTING THEREOUT ALL MINES AND MINERALS AND THE RIGHT TO WORK THE SAME ESTATE: FEE SIMPLE MUNICIPALITY: CITY OF LETHBRIDGE REGISTERED OWNER(S) REGISTRATION DATE (DMY) DOCUMENT TYPE CONSIDERATION VALUE _____ _____ 821 153 047 03/09/1982 \$291,294 OWNERS THE CITY OF LETHBRIDGE. OF 910-4 AVE S LETHBRIDGE ALBERTA _____ ENCUMBRANCES, LIENS & INTERESTS REGISTRATION NUMBER DATE (D/M/Y) PARTICULARS 2834IC . 19/09/1960 UTILITY RIGHT OF WAY GRANTEE - CANADIAN WESTERN NATURAL GAS COMPANY LIMITED. AS TO PORTION OR PLAN: 2602IC "FOR GAS PIPE LINES"

(CONTINUED)

ENCUMBRANCES, LIENS & INTERESTS

PAGE 2 # 821 153 047 B .

REGISTRATION

NOMBER DATE (D/M/I)

NUMBER DATE (D/M/Y) PARTICULARS

831 079 200 03/05/1983 UTILITY RIGHT OF WAY GRANTEE - ALBERTA HOME MORTGAGE CORPORATION. AS TO PORTION OR PLAN:8211477

TOTAL INSTRUMENTS: 002

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 23 DAY OF APRIL, 2014 AT 03:09 P.M.

ORDER NUMBER: 25796446

CUSTOMER FILE NUMBER:

END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

LAND TITLE CERTIFICATE

s LINC SHORT LEGAL TITLE NUMBER 0034 421 685 4;21;9;17;;11,14 101 239 380 +112 LEGAL DESCRIPTION MERIDIAN 4 RANGE 21 TOWNSHIP 9 SECTION 17 LEGAL SUBDIVISIONS 11 AND 14 CONTAINING 32.4 HECTARES (80 ACRES) MORE OR LESS EXCEPTING THEREOUT: HECTARES ACRES MORE OR LESS PLAN NUMBER 0.084 0.21 1013066 SUBDIVISION EXCEPTING THEREOUT ALL MINES AND MINERALS AND THE RIGHT TO WORK THE SAME ESTATE: FEE SIMPLE MUNICIPALITY: CITY OF LETHBRIDGE REFERENCE NUMBER: 821 153 047 _____ REGISTERED OWNER(S) REGISTRATION DATE (DMY) DOCUMENT TYPE VALUE CONSIDERATION _____ 101 239 380 12/08/2010 SUBDIVISION PLAN OWNERS THE CITY OF LETHBRIDGE. OF 910 - 4TH AVE. SOUTH, LETHBRIDGE ALBERTA ENCUMBRANCES, LIENS & INTERESTS REGISTRATION NUMBER DATE (D/M/Y) PARTICULARS _____ 871 177 437 28/09/1987 UTILITY RIGHT OF WAY GRANTEE - THE CITY OF LETHBRIDGE. AS TO PORTION OR PLAN:8711228 "LSD 14"

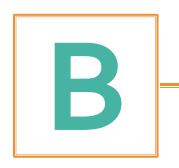
REGISTRATION	ENCUMBRANCES, LIENS & INTERESTS	PAGE 2 # 101 239 380 +112
	M/Y) PARTICULARS	
101 239 384 12/08/2	2010 UTILITY RIGHT OF WAY GRANTEE - THE CITY OF LETHBRIDGE AS TO PORTION OR PLAN:1013068	Σ.
101 282 716 22/09/2	2010 UTILITY RIGHT OF WAY GRANTEE - THE CITY OF LETHBRIDGE AS TO PORTION OR PLAN:1013532	5.
121 055 314 06/03/2	2012 CAVEAT RE : DEFERRED RESERVE CAVEATOR - THE CITY OF LETHBRIDG 910 4TH AVENEUE SOUTH LETHBRIDGE ALBERTA AGENT - MAUREEN GAEHRING	SE.
121 255 933 01/10/2	2012 UTILITY RIGHT OF WAY GRANTEE - THE CITY OF LETHBRIDGE AS TO PORTION OR PLAN:1212840	Ξ.

TOTAL INSTRUMENTS: 005

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 23 DAY OF APRIL, 2014 AT 03:09 P.M.

ORDER NUMBER: 25796446

CUSTOMER FILE NUMBER:


END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

BLACKWOLF STAGE 2 OUTLINE PLAN

APPENDIX B

Transportation Impact Assessment

April 29, 2014 File: 112945510

Attention: Mr. Ahmed Ali, P. Eng., PTOE The City of Lethbridge Infrastructure Services City Hall, 910 – 4th Avenue South Lethbridge, AB T1J 0P6

Dear Mr. Ali,

Reference: Blackwolf Stage 2 Transportation Impact Assessment – Comment Responses

Please find enclosed an update to our report entitled "Blackwolf Stage 2 Transportation Impact Assessment", which was originally submitted to the City of Lethbridge on March 21, 2014. The updated reported, entitled "Blackwolf Stage 2 Transportation Impact Assessment, April 25, 2014" addresses the comments provided by the City following its review of the original document. A copy of the email received by Stantec on April 8, 2014 regarding the City's review of the original document has been added to the correspondence section in the updated report (see **Appendix 'A'**).

A brief review of the comments received and the means by which they were addressed follows:

1. <u>City's Comment</u>. Section 4.3 - Comment on long queue lengths i.e., 44 Ave N/Uplands Blvd W 196m

<u>Response</u>: The 44 Avenue / Uplands intersection has a queue of 196m on the westbound approach in the afternoon peak, comparing to that of 102m from the background condition. However, the approach is expected to operate with an level of service of C, and the intersection will continue to operate at acceptable levels of service during both the morning and afternoon peak hours.

As a means of mitigating the potential for long queues, two additional configurations have been included in the analysis, specifically: addition of a designated westbound left turn lane; and implementation of a single-lane roundabout. Analysis of both options indicated that either would effectively reduce the potential queuing along 44 Avenue.

2. <u>City's Comment</u> The 60m left turn bay length recommended for the WB left turn at 44 Av N/Scenic Dr N is shorter than the post dev queue length of 74m in Table 4.3

<u>Response</u>: Acknowledged, the recommended westbound left turn lane storage of 44 Ave N and Scenic Dr. N intersection has been updated to 75m.

3. City's Comment Show turn lane lengths in Figure 4.1

<u>Response</u>: Acknowledged, Figure 4.1 has been revised to show turning lane lengths.

Reference: Blackwolf Stage 2 Transportation Impact Assessment - Comment Responses

- 4. City's Comment Figure 4.3: Road classification
 - 44 Ave N to be Super Collector/Community Entrance up to the first connection east of Scenic Dr N with the remaining being shown as a major collector road
 - The N-S road in the center of the OP area shall be a minor collector road (will make good sense for a good network planning)

Response: Acknowledged, Figure 4.3 has been revised according to the comments.

Regards,

STANTEC CONSULTING LTD.

Cole Piechotta, P. Eng. Transportation Engineer Phone: (403)-716-1462 Fax: (403)716-8129 cole.piechotta@stantec.com

Attachment: Blackwolf Stage 2 Transportation Assessment, April 25, 2014

c. Annie Wang – Stantec Consulting Ltd. David Thatcher – Stantec Consulting Ltd.

wa v:\1136\active\112945510\02_planning\02_report\20140321_report\comment_response_letter.docx

Blackwolf Stage 2 Transportation Impact Assessment

112945510

Prepared for: City of Lethbridge Real Estate and Land Development

Prepared by: Stantec Consulting Ltd. 200 – 325 – 25th Street SE Calgary, AB T2A 7H8

Stantec Consulting Ltd. 290 – 220 – 4th Street S Lethbridge, AB TI J 4J7

April 25, 2014

Sign-off Sheet

This document entitled Blackwolf Stage 2 Transportation Impact Assessment was prepared by Stantec Consulting Ltd. for the account of the City of Lethbridge Real Estate and Land Development. The material in it reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Prepared by: Cole Piechotta, P.Eng.

Reviewed by: David Thatcher, P.Eng.

PERMIT TO PRACTICE STANFEC CONSULTING LTD. Signature Date 7015 PERMIT NUMBER: P 0258 The Association of Professional Engineers, Geologists and Geophysicists of Alberta

Corporate Authorization

Table of Contents

EXEC	CUTIVE SUMMARY	I
1.0 1.1 1.2 1.3	INTRODUCTION BACKGROUND OBJECTIVES STUDY AREA	1.1 1.1
2.0 2.1 2.2	BACKGROUND TRAFFIC VOLUME EXISTING TRAFFIC VOLUMES ADDITIONAL DEVELOPMENT TRAFFIC	
3.0 3.1 3.2 3.3	DEVELOPMENT PROPOSAL PROPOSED DEVELOPMENT TRIP GENERATION TRIP DISTRIBUTION AND ASSIGNMENT	
4.0 4.1 4.2 4.3 4.4	INTERSECTION ANALYSIS ANALYSIS CRITERIA	
5.0 5.1 5.2	TRANSIT AND ACTIVE MODES ACTIVE MODES CONSIDERATIONS LOCAL TRANSIT SERVICE	5.1
6.0	CONCLUSIONS	6.1
LICT /		

LIST OF TABLES

Table 2.1 Trip Generation Rates	. 2.6
Table 2.2 Lethbridge Transportation Zone Assumptions	
Table 2.3 Trip Generation – Zones 301, 404, 405, 402/403/406/407	. 2.8
Table 3.1 Development Summary	. 3.1
Table 3.2 Trip Rates for Regional Park	
Table 3.3 Trip Generation – Blackwolf Stage 2	
Table 4.1 Level of Service Criteria	
Table 4.2 2030 Background Operating Conditions	. 4.2
Table 4.3 2030 Post Development Operating Conditions	

LIST OF FIGURES

Figure 1.1 Site Location	1.2
Figure 1.2 Proposed Development	1.3
Figure 1.3 Study Area	1.4
Figure 2.1 Existing Traffic Volumes – AM Peak Hour	2.2
Figure 2.2 Existing Traffic Volumes – PM Peak Hour	2.3
Figure 2.3 Adjusted Existing Traffic Volumes – AM Peak Hour	2.4
Figure 2.4 Adjusted Existing Traffic Volumes – PM Peak Hour	
Figure 2.5 Surrounding Area Developments	2.7
Figure 2.6 Legacy Ridge Stage 3 Volumes – AM Peak Hour	2.10
Figure 2.7 Legacy Ridge Stage 3 Volumes – PM Peak Hour	2.11
Figure 2.8 Blackwolf Stage 1 Volumes – AM Peak Hour	
Figure 2.9 Blackwolf Stage 1 Volumes – PM Peak Hour	2.13
Figure 2.10 Zone 301 Volumes – AM Peak Hour	2.14
Figure 2.11 Zone 301 Volumes – PM Peak Hour	2.15
Figure 2.12 Zone 404 Volumes – AM Peak Hour	2.16
Figure 2.13 Zone 404 Volumes – PM Peak Hour	2.17
Figure 2.14 Zone 405 Volumes – AM Peak Hour	2.18
Figure 2.15 Zone 405 Volumes – PM Peak Hour	2.19
Figure 2.16 Zones 402/403/406/407 Volumes – AM Peak Hour	2.20
Figure 2.17 Zones 402/403/406/407 Volumes – PM Peak Hour	2.21
Figure 2.18 2030 Horizon Background Volumes – AM Peak Hour	2.22
Figure 2.19 2030 Horizon Background Volumes – PM Peak Hour	2.23
Figure 3.1 2030 Site Generated Traffic Volumes – AM Peak Hour	3.3
Figure 3.2 2030 Site Generated Traffic Volumes – PM Peak Hour	3.4
Figure 3.3 2030 Post Development Traffic Volumes – AM Peak Hour	3.5
Figure 3.4 2030 Post Development Traffic Volumes – PM Peak Hour	3.6
Figure 4.1 2030 Post Development Horizon Recommended Lane Configurations	4.6
Figure 4.2 Daily Traffic Volumes	4.8
Figure 4.3 Proposed Roadway Classifications	4.9
Figure 5.1 Existing Transit Network	5.2

LIST OF APPENDICES

APPENDIX A CORRESPONDENCE WITH CITY OF LETHBRIDGE
 APPENDIX B EXISTING TRAFFIC COUNT INFORMATION
 APPENDIX C CITY TRANSPORTATION ZONES AND POPULATION/EMPLOYMENT
 APPENDIX D ADJACENT DEVELOPMENT INFORMATION
 APPENDIX E OUTLINE PLAN INFORMATION
 APPENDIX F SYNCHRO AND SIDRA REPORTS

Stantec

 $wa v: \\ 1136 \\ active \\ 112945510 \\ 02_planning \\ 02_report \\ 20140321_report \\ 140425_blackwolf_stage_2_tia_update.docx \\ active \\ 112945510 \\ 02_planning \\ 02_report \\ 20140321_report \\ 140425_blackwolf_stage_2_tia_update.docx \\ active \\ 112945510 \\ 02_report \\ 20140321_report \\ 140425_blackwolf_stage_2_tia_update.docx \\ active \\ 112945510 \\ 02_report \\ 20140321_report \\ 140425_blackwolf_stage_2_tia_update.docx \\ active \\ 112945510 \\ 02_report \\ 20140321_report \\ 140425_blackwolf_stage_2_tia_update.docx \\ active \\ 112945510 \\ 02_report \\ 20140321_report \\ 140425_blackwolf_stage_2_tia_update.docx \\ active \\ 140425_blackwolf_stage_2_tia_update.docx \\ active_3_tia_update.docx \\ active_3_tia_$

Executive Summary

Approximately 70 hectares of land in North Lethbridge is being prepared to support a residential development. The proposed development, known as Blackwolf Stage 2, will consist of 345 low density residential units and 232 medium density residential units. Additionally, an 80 acre regional park is being proposed as part of the development. These uses have been accounted for in the transportation analysis.

The development has been assessed for a full-build horizon that has been assumed to occur by the 2030 horizon. The transportation analysis includes all seven community access points, one internal intersection, and four surrounding arterial/collector or collector/collector intersections.

The objectives of the analysis included estimating the impacts of vehicular traffic on the roadway system at both horizons, and recommending appropriate improvements to accommodate the associated traffic volumes. The scope of the study was established through consultation with the City of Lethbridge Infrastructure Services using the City of Lethbridge Transportation Impact Study Guidelines as a reference.

The analysis contained within this TIA demonstrates that, with some infrastructure modifications, the surrounding road network will be able to support the development of the Blackwolf Stage 2 at the 2030 full-build horizon.

Introduction April 25, 2014

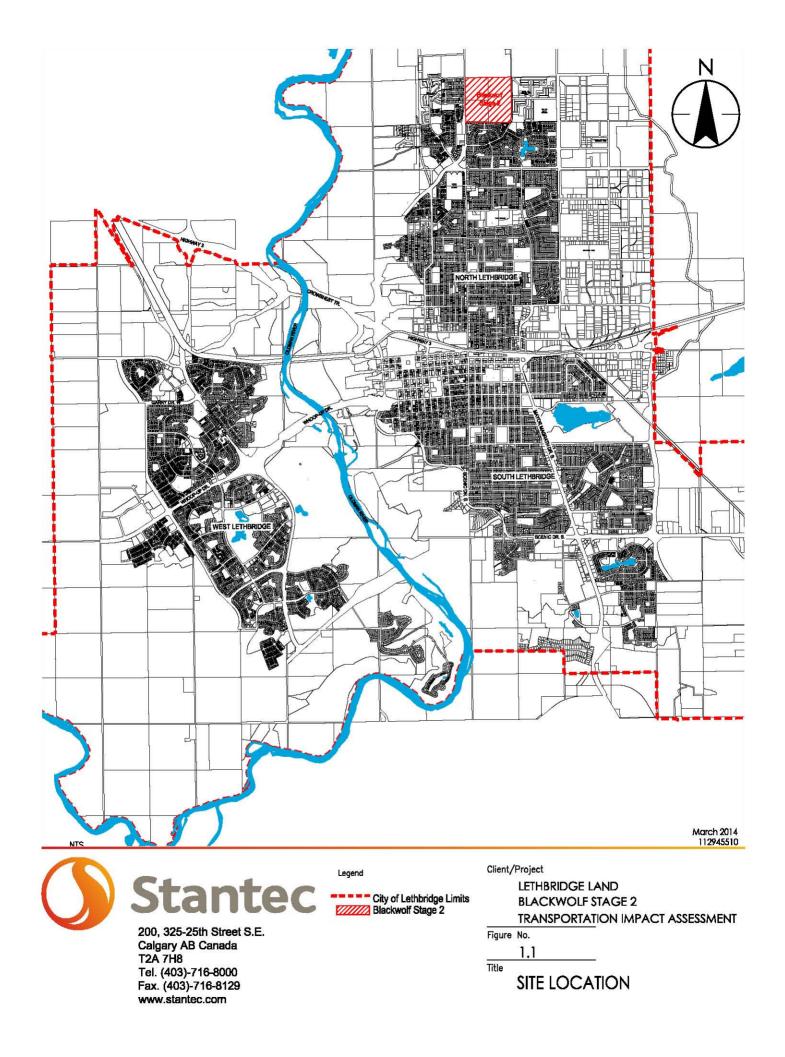
1.0 Introduction

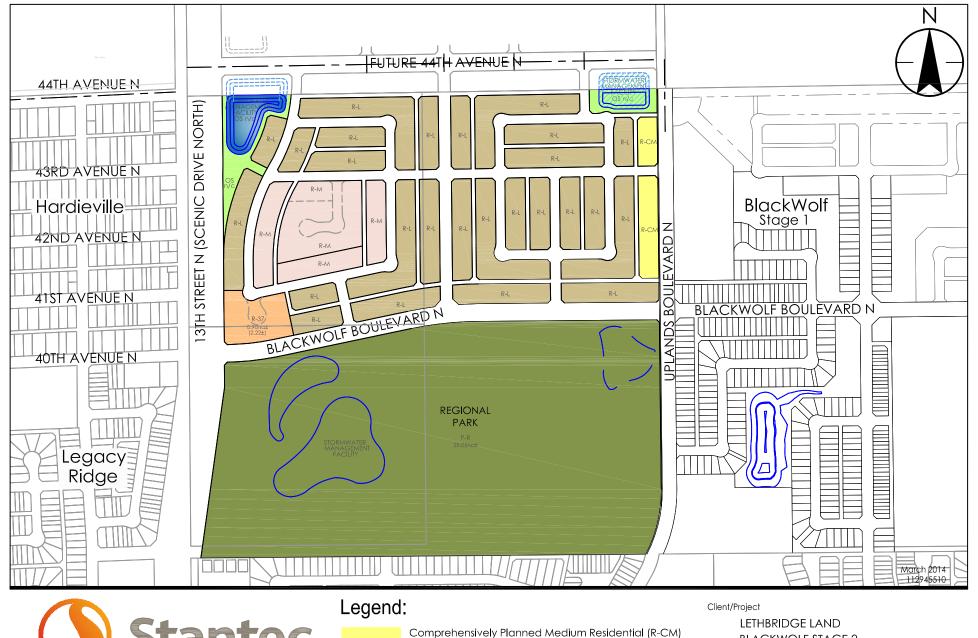
1.1 BACKGROUND

Stantec Consulting Ltd. (Stantec) was retained by the City of Lethbridge Real Estate and Land Development (Lethbridge Land) to undertake a Transportation Impact Assessment (TIA) in support of the Outline Plan Application for Blackwolf Stage 2 in North Lethbridge. The proposed development comprises 59.8 HA of land within the Hardieville/Legacy Ridge/Uplands Area Structure Plan area. **Figure 1.1** illustrates the location of the subject site in the context of the City of Lethbridge.

The proposed development is bound to the west by 13 Street North (future Scenic Drive North), to the east by Uplands Boulevard, and to the south by the existing Uplands Development. To the north is an undeveloped area between the subject development and the Future 44 Avenue North. **Figure 1.2** illustrates the proposed land use for the development, which is made up entirely of low and medium density residential uses.

1.2 OBJECTIVES

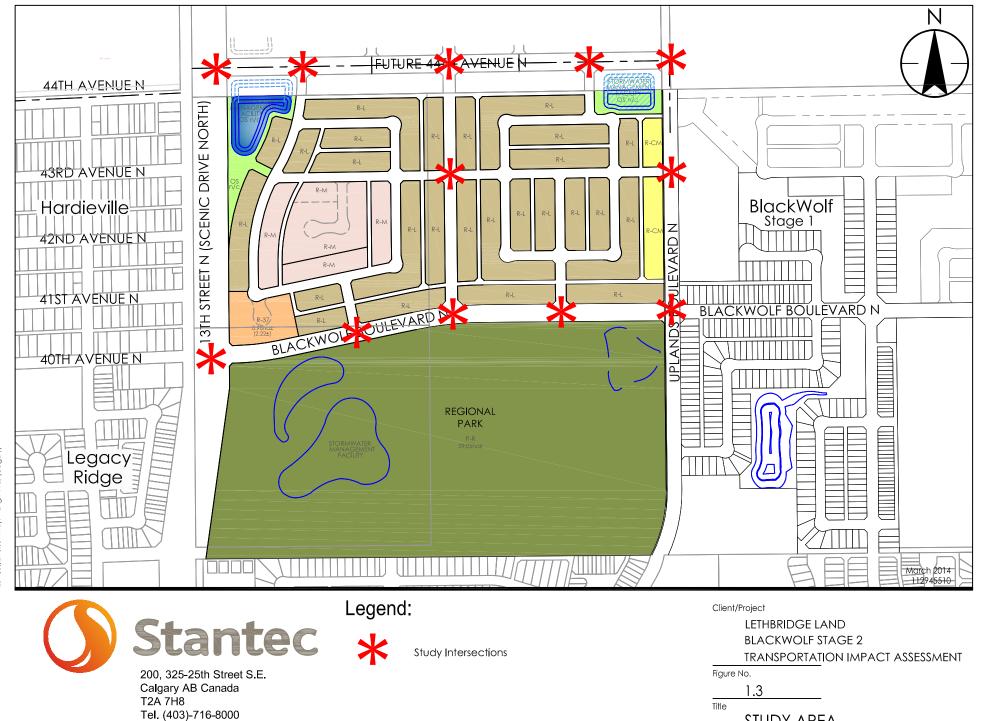

The City of Lethbridge *Traffic Impact Study Guidelines* were used as a reference in developing the scope for the transportation impact assessment; the objectives of the study, as agreed to with the City of Lethbridge Infrastructure Services are to:


- Establish the 2030 background traffic conditions in the vicinity of the proposed development
- Estimate the magnitude and characteristics of peak hour traffic generated by the proposed development at the 2030 (full-build) horizon
- Evaluate the impacts of vehicular traffic generated by the proposed development on the roadway system at the 2030 (full-build) horizon
- Identify and recommend appropriate traffic operation and / or infrastructure improvements necessary to accommodate the 2030 (full-build) horizon traffic volumes
- Estimate the two-way traffic volumes to confirm the classification of the road network within the study area

1.3 STUDY AREA

The Study Area and study intersections, as agreed to by the City of Lethbridge Infrastructure Services department, are illustrated in **Figure 1.3**. Correspondence with Infrastructure Services regarding the scope of this study is documented in **Appendix A**.

Stantec 200, 325-25th Street S.E.


Calgary AB Canada T2A 7H8 Tel. (403)-716-8000 Fax. (403)-716-8129 www.stantec.com

Low Density Residential (R-L) Medium Density Residential (R-37) Mixed Density Residential (R-M) Parks and Recreation (P-R) Open Space - Non Credit (OS n/c)

Storm Water Management (to HWL)

BLACKWOLF STAGE 2 TRANSPORTATION IMPACT ASSESSMENT Figure No. .2 Title PROPOSED DEVELOPMENT

V:\1136\Active\112945510\02_planning\02_report\20140321_report\pdf\CAD\fig.dwg 2014/03/21 3:05 PM By: Wang, Annie (Calgary)

> Fax. (403)-716-8129 www.stantec.com

STUDY AREA

Background Traffic Volume April 25, 2014

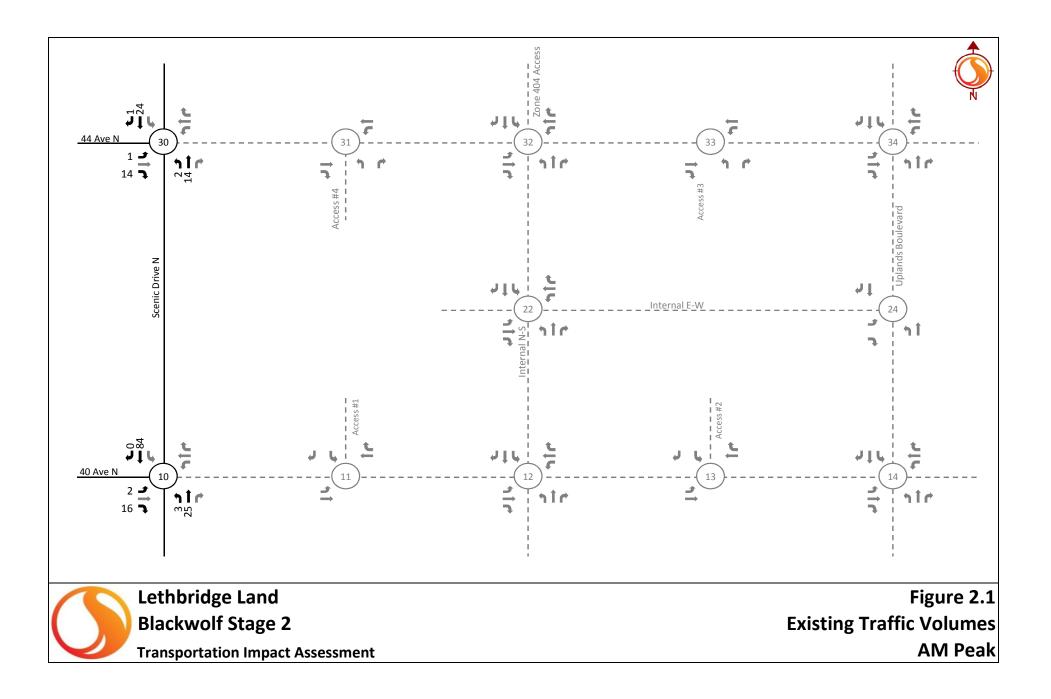
2.0 Background Traffic Volume

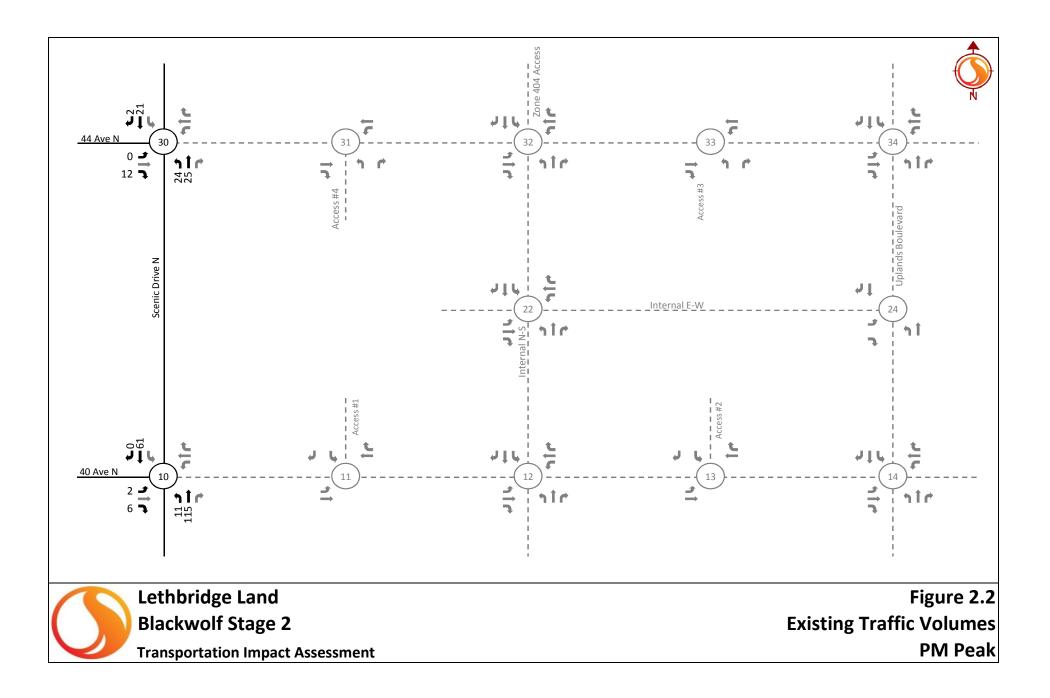
2.1 EXISTING TRAFFIC VOLUMES

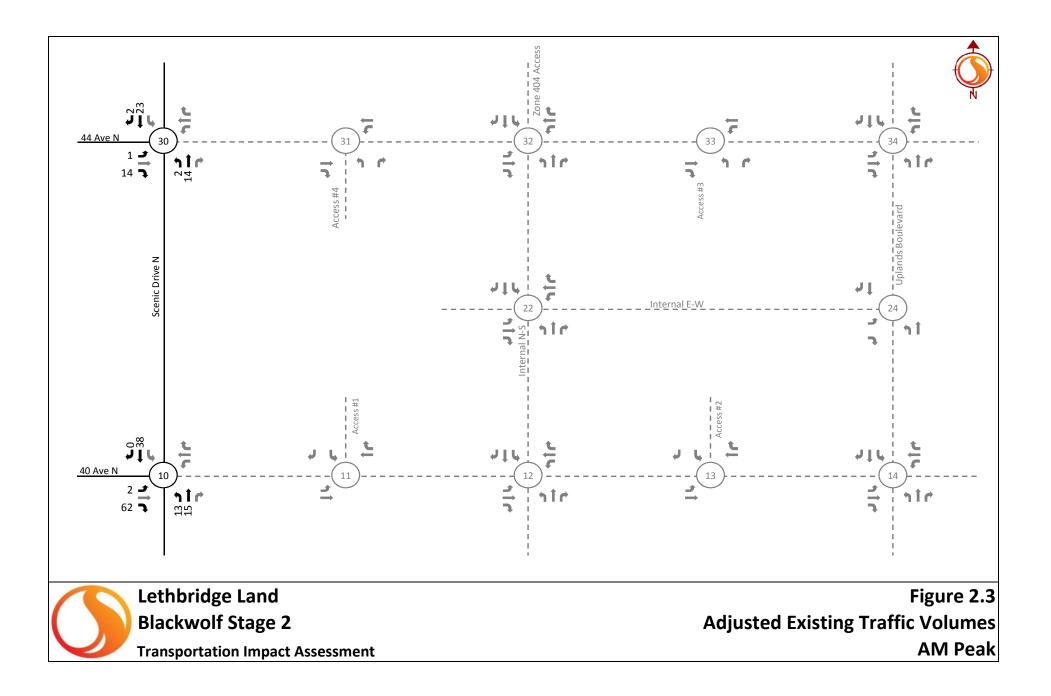
Traffic counts were previously performed as a component of the 13 Street North/Hardieville Access Management Study (Stantec, draft report completed April 8, 2013). Count information was collected on Wednesday, March 7, 2012 at the following intersections:

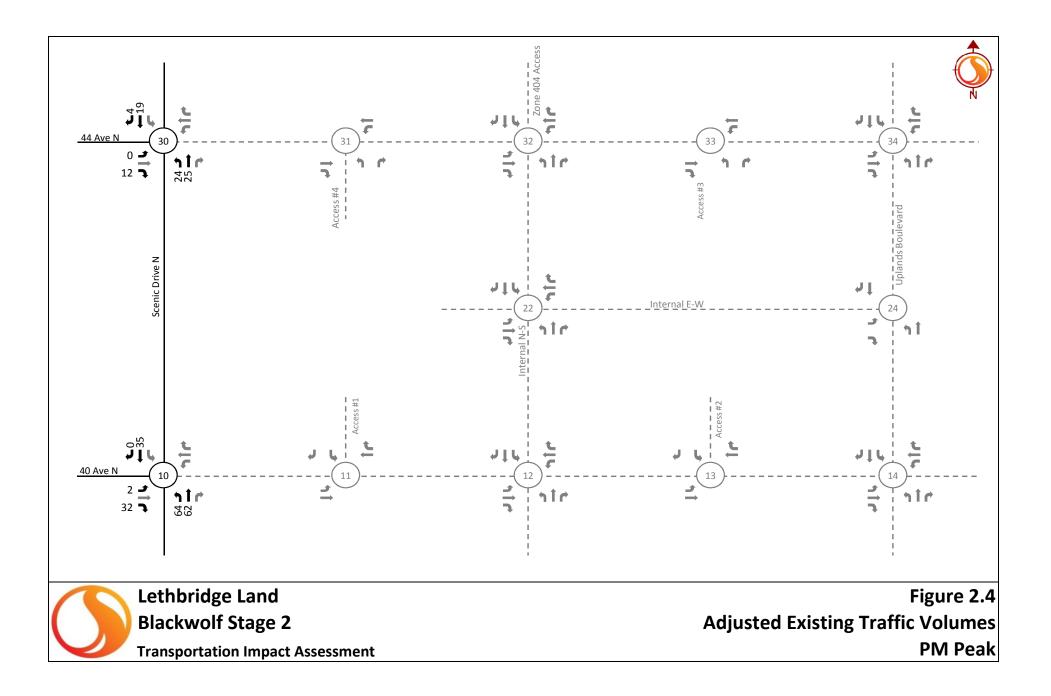
- 13 Street / 40 Avenue North
- 12 Street / 40 Avenue North
- 13 Street / 41 Avenue North
- 13 Street / 42 Avenue North
- 13 Street / 43 Avenue North
- 13 Street / 44 Avenue North

The counts were conducted for the morning peak period (7:00 AM - 9:00 AM) and the afternoon peak period (4:00 PM - 6:00 PM). The traffic count data can be found in **Appendix B**.


The City of Lethbridge Transportation Master Plan identifies an extension of Scenic Drive to the north. The proposed extension runs through the existing 13 Street North right of way. The existing 13 Street is will be made discontinuous, and access to the existing developments on the west side of 13 Street will be provided at two new intersections with Scenic Drive as described below.


The following adjustments were made to the existing volumes to establish future access conditions for the developments on the west side of 13 Street:


- 1. It was assumed that the two new intersections would be located approximately wehere the existing intersections of 13 Street with 40 Avenue and 44 Avenue are located.
- 2. All northbound traffic originating south of 40 Avenue that presently accesses Hardieville via 40 Avenue, 41, Avenue, 42 Avenue, and 43 Avenue was assigned to the new 40 Avenue access. Northbound traffic originating south of 40 Avenue that presently accesses Hardieville via 44 Avenue was assigned to the new 44 Avenue access.
- 3. All southbound traffic originating north of 44 Avenue that presently accesses Hardieville via 41 Avenue, 42 Avenue, 43 Avenue, and 44 Avenue was assigned to the new 44 Avenue access. Southbound traffic originating north of 44 Avenue that presently accesses Hardieville via 40 Avenue was assigned to the new 40 Avenue access.


The existing AM and PM peak hour traffic volumes for 40 and 44 Avenue are summarized on **Figure 2.1** and **Figure 2.2**. The adjusted existing volumes are illustrated on **Figure 2.3** and **Figure 2.4**.

Background Traffic Volume April 25, 2014

2.2 ADDITIONAL DEVELOPMENT TRAFFIC

To capture the full build out of the subject development, a horizon year of 2030 was selected. This will capture the build out of the subject development, the construction of 44th Avenue, and development/occupancy of some of the surrounding areas.

To establish assumptions for background traffic related to surrounding developments, a review of available studies and City land use assumptions was undertaken. The methodology for establishing the background traffic for the study area is described below.

The following developments in the surrounding area were considered (the City Transportation Zone numbers are shown below along with development names, in cases where they are known):

- 1. Zone 303 Legacy Ridge
- 2. Zone 409 Blackwolf Stage 1
- 3. Zone 301 (primarily residential lands)
- 4. Zone 404 (primarily residential lands)
- 5. Zone 405 (primarily residential lands)
- 6. Zone 402, 403, 406, 407 (primarily industrial lands)

For Zones 303 and 409 (Legacy Ridge and Blackwolf Stage 1), background traffic was established using information from the approved TIA reports.

For zones 301, 404, 405, and 402/403/406/407, background traffic was established by applying City of Lethbridge trip rates to City population/employment assumptions.

Appendix C contains a map of the City Transportation Zones as well as the population/employment assumptions for the 2020 and 2040 horizons. **Figure 2.5** illustrates the location of the zones that were considered in establishing background traffic volumes for the study.

For locations were residential trip estimates were required, City of Lethbridge trip generation rates for low and medium density residential units were applied. For the industrial uses, rates for Land Use 110: General Light Industrial from ITE Trip Generation, 9th Edition were applied. The trip generation rates are summarized in **Table 2.1**.

T	AM Peak	Hour		PM Peak Hour					
Use		In	Out		In	Out			
Low Density Residential	0.77 vph/unit	26%	74%	1.02 vph/unit	64%	36%			
Medium Density Residential	0.75 vph/unit	29%	71%	0.92 vph/unit	61%	39%			
Light Industrial	7.51 vph/acre	83%	17%	7.26 vph/acre	22%	78%			

Table 2.1 Trip Generation Rates

200, 325-25th Street S.E. Calgary AB Canada T2A 7H8 Tel. (403)-716-8000 Fax. (403)-716-8129 www.stantec.com

Legend:

Client/Project LETHBRIDGE LAND BLACKWOLF STAGE 2 TRANSPORTATION IMPACT ASSESSMENT Figure No.

Figure No.

SURROUNDING AREA DEVELOPMENTS

Background Traffic Volume April 25, 2014

The City of Lethbridge population/employment assumptions are based off of 2020 2040 horizon years. Population assumptions for zones 301, 404, and 405 were estimated for the 2030 horizon using linear interpolation of the 2020 and 2040 horizon populations. An estimated number of residential units for zones 301, 404, and 405 for the 2030 horizon were then calculated using a rate of 2.7 people/unit.

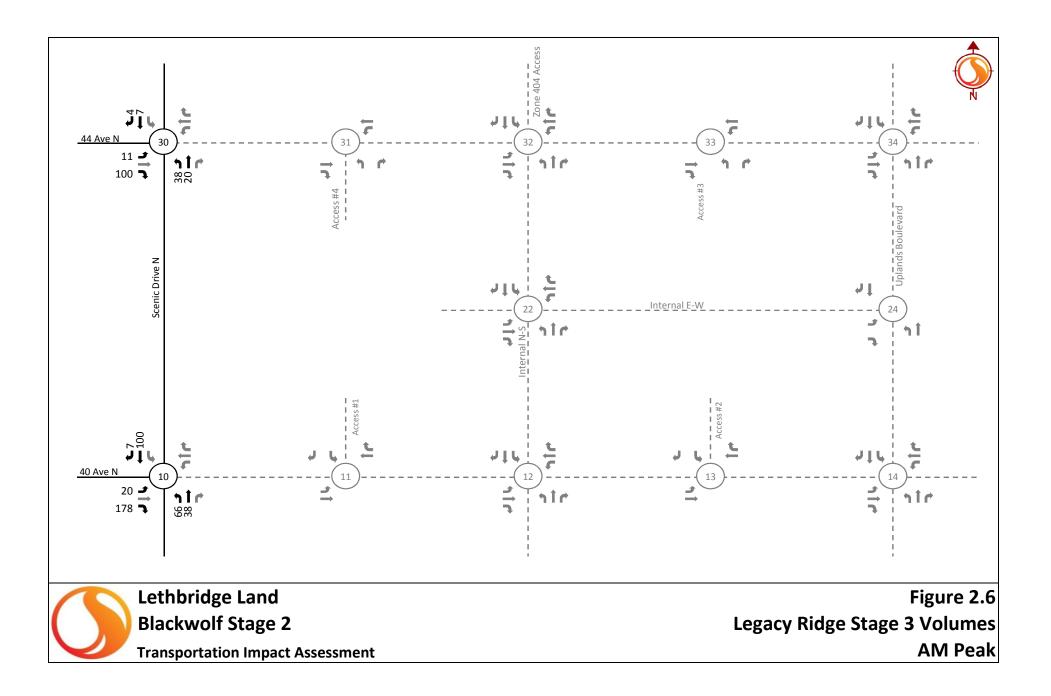
Employment assumptions for zones 402/403/406/407 were estimated for the 2030 horizon using linear interpolation of the 2020 and 2040 horizon employment numbers. Based on the level of employments for the 2030 horizon, it was estimated that approximately 160 acres of land would be developed within zones 402/403/406/407 by the 2030 horizon. **Table 2.2** summarizes the assumptions for population, employment, and development yields for zones 301, 404, 405, and 402/403/406/407.

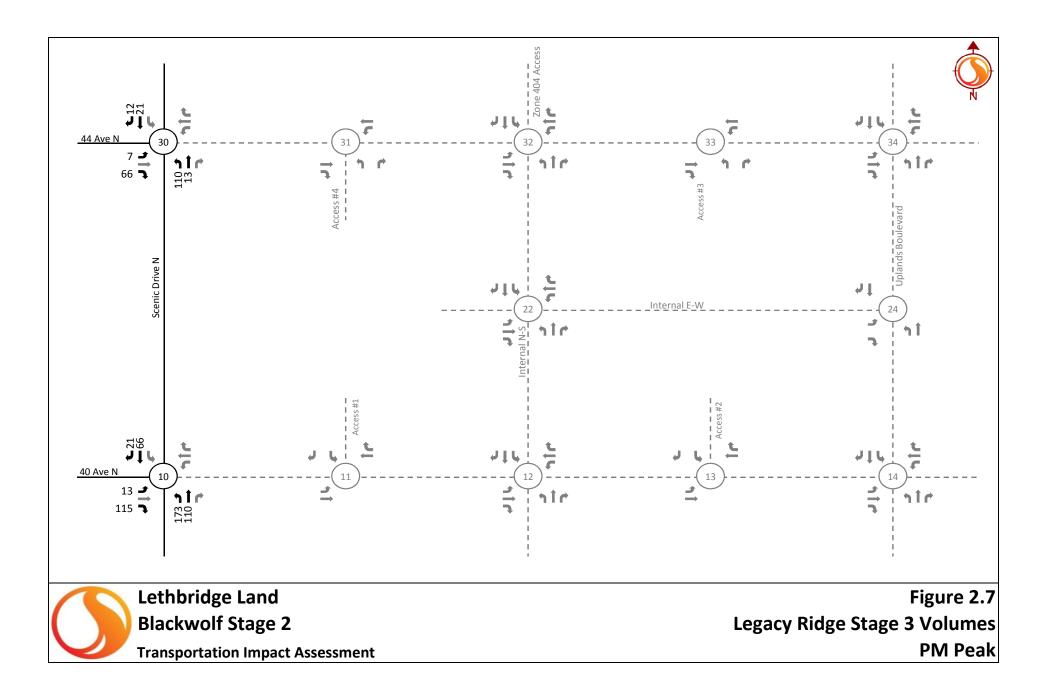
Zone	2020 Population	2040 Population	2030 Population	Development Yield
301	49	1800	925	342 SF Units
404	0	886	443	164 SF Units
405	0	886	443	164 SF Units
Zone	2020 Employment	2040 Employment	2030 Employment	Development Yield
402	10	188	99	
403	145	333	239	160 Acres
406	0	847	424	Tou Acres
407	0	847	424	

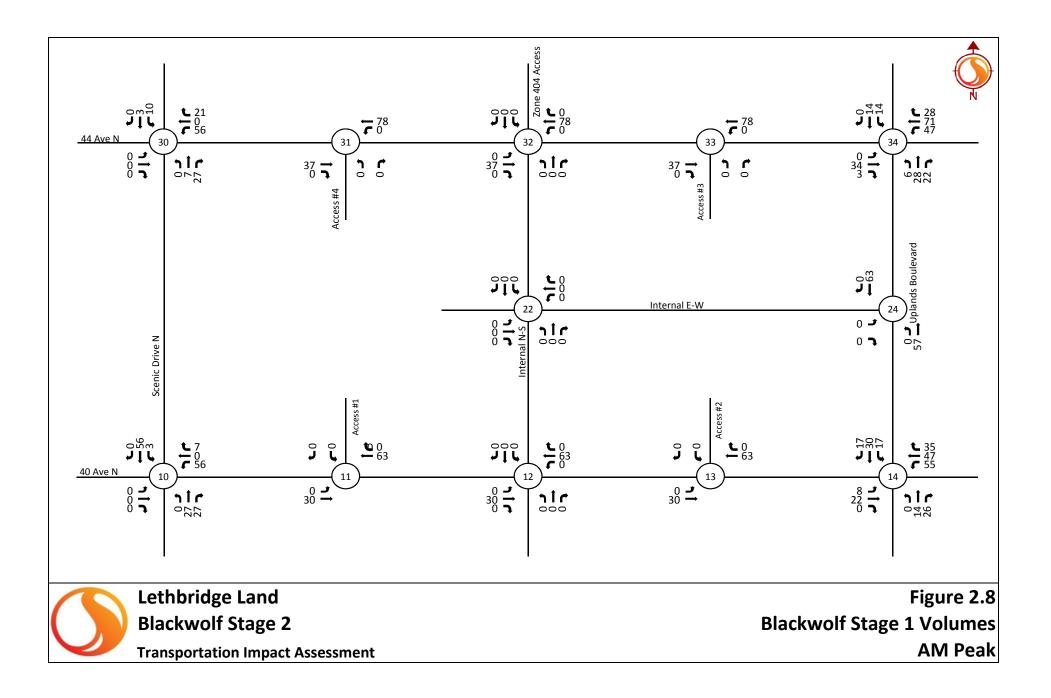
Table 2.2 Lethbridge Transportation Zone Assumptions

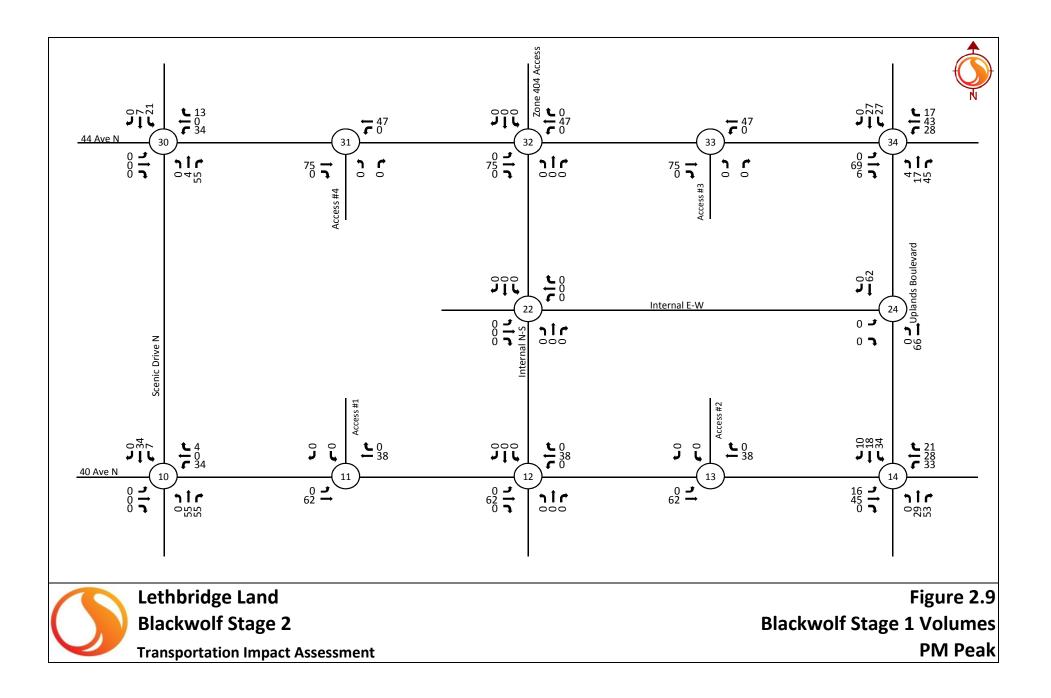
The number of trips for zones 301, 404, 405, and 402/403/406/407 were estimated by applying the rates included in Table 2.1 to the development yields included in Table 2.2. The resulting 2030 horizon background trips for zones 301, 404, 405, and 402/403/406/407 are summarized in **Table 2.3**.

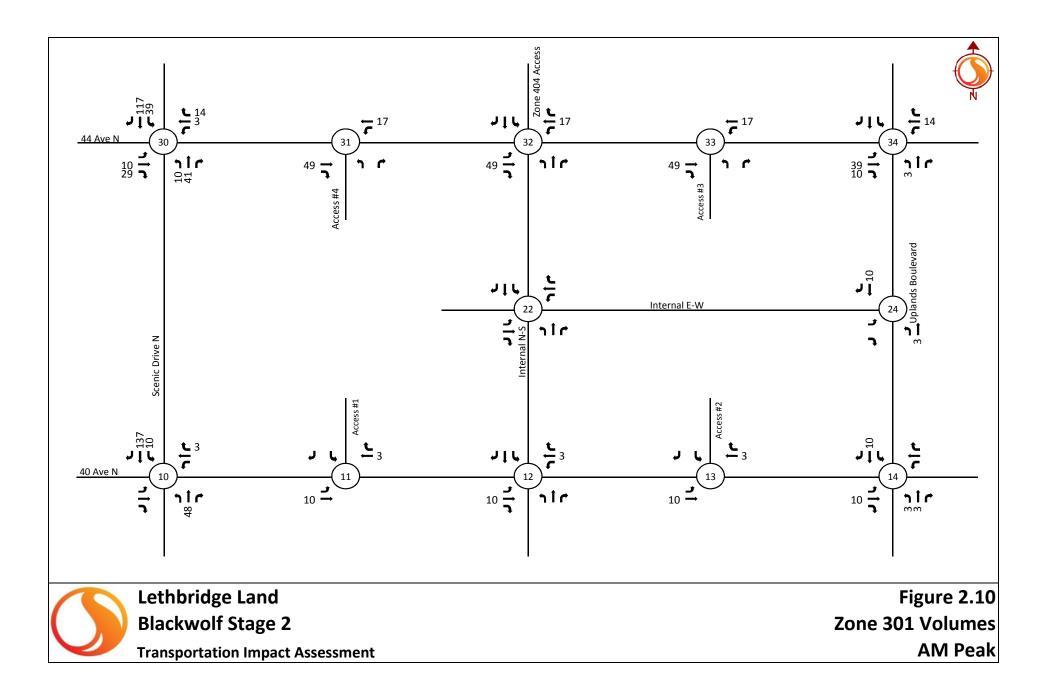
Zone		AM Peak		PM Peak							
Zone	Total	In	Out	Total	In	Out					
301	263	68	195	349	223	126					
404	126	33	93	167	107	60					
405	126	33	93	167	107	60					
402/403/406/407	1,201	997	204	1,162	256	906					

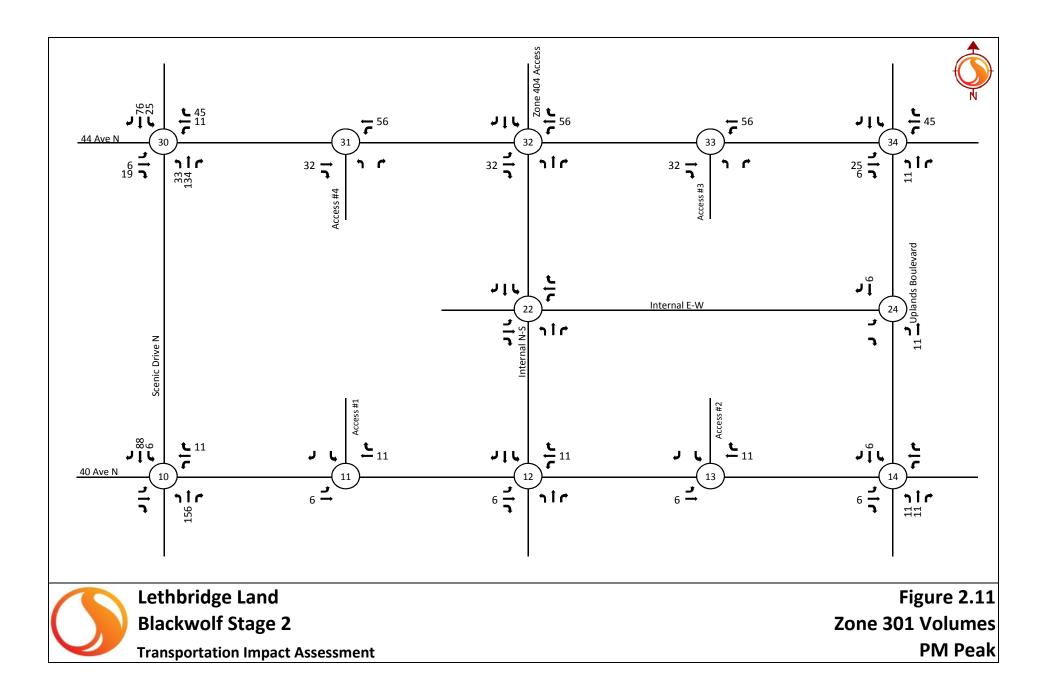

Background Traffic Volume April 25, 2014

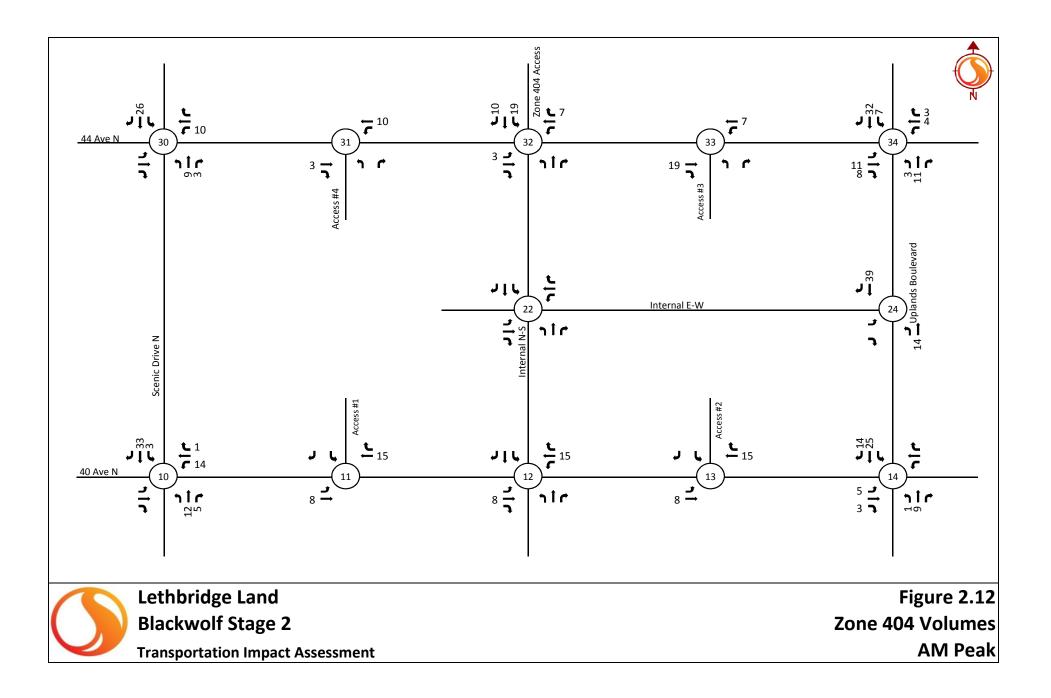

The trip distribution and assignment assumptions for the six surrounding developments (Legacy Ridge, Blackwolf Stage 1, zone 301, zone 404, zone 404, zones 402/403/406/407) assumed to contribute background traffic at the 2030 horizon are summarized below.

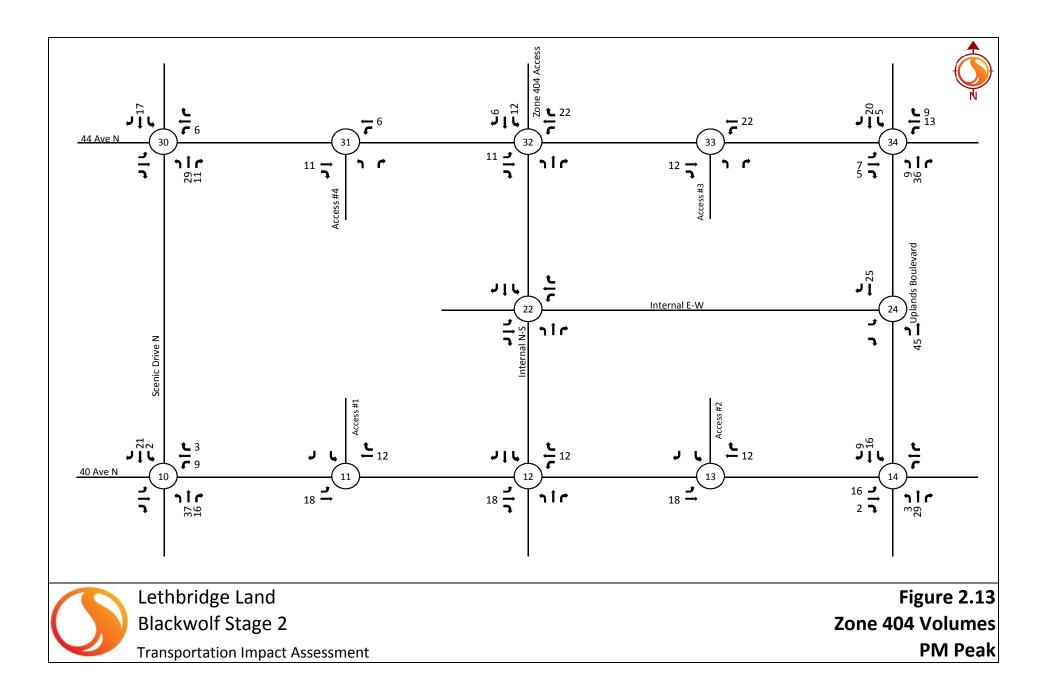

- For Legacy Ridge, the majority of the development was occupied at the time the traffic count data was collected. The remaining traffic (additional traffic associated with Legacy Ridge Stage 3) was established using volumes from the Legacy Ridge Stage 3 Transportation Impact Assessment, completed in March 2008 by Stantec, were used. The volumes from "Figure 4.2 2037 Development Traffic Volumes" were utilized as these illustrate the full-build horizon site traffic volumes for Legacy Ridge Stage 3. Figure 4.2 from the TIA is included in Appendix D. The volumes for Legacy Ridge Stage 3 are illustrated on Figure 2.6 and Figure 2.7.
- 2. To establish the traffic associated with Blackwolf Stage 1, the Black Wolf Traffic Impact Study, completed in October 2009 by iTrans, was reviewed. "Table 6-1 Site Peak Hour Trip Generation" summarizes the trips associated with Blackwolf Stage 1. The development was assumed to generate 834 trips (270 inbound/564 outbound) during the morning peak hour and 889 trips (548 inbound/341 outbound) during the afternoon peak hour. The report assumed approximately 50% of the trips would access the development to/from the east (primarily via 28 Street) and approximately 50% of the trips would access the development to/from the west (primarily via Uplands Boulevard and Scenic Drive North). The volumes for Blackwolf Stage 1 are illustrated on **Figure 2.8** and **Figure 2.9**.
- 3. The traffic associated with zone 301 was assigned to the network using the following distribution: 70% to/from Scenic Drive and 26 Avenue, 10% to/from Uplands Boulevard; 20% to/from 44 Avenue. The volumes for zone 301 are illustrated on **Figure 2.10** and **Figure 2.11**.
- 4. The traffic associated with zone 404 was assigned to the network using the following distribution: 50% to/from Scenic Drive and 26 Avenue, 30% to/from Uplands Boulevard; 20% to/from 44 Avenue. The volumes for zone 404 are illustrated on **Figure 2.12** and **Figure 2.13**.
- 5. The traffic associated with zone 405 was assigned to the network using the following distribution: 70% to/from Scenic Drive and 26 Avenue, 30% to/from Uplands Boulevard. The volumes for zone 405 are illustrated on **Figure 2.14** and **Figure 2.15**.
- 6. For zones 402/403/406/407, it was assumed that approximately 50% of the site traffic would access the development to/from the east (primarily via 28 Street or 43 Street). The remaining 50% of the site traffic was assigned to the network using the following distribution: 70% to/from Scenic Drive and 26 Avenue, 30% to/from Uplands Boulevard. The volumes for zones 402/403/406/407 are illustrated on Figure 2.16 and Figure 2.17.

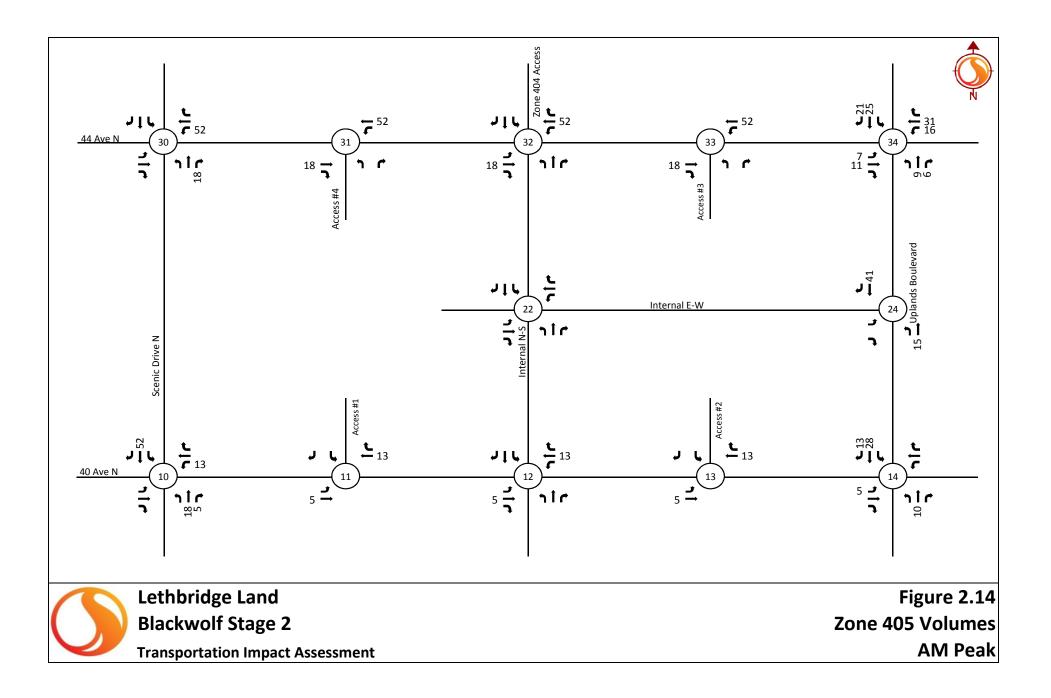

The traffic from the six surrounding development was combined with the adjusted existing traffic volumes. The resulting 2030 horizon background traffic volumes are illustrated on **Figure 2.18** and **Figure 2.19**.

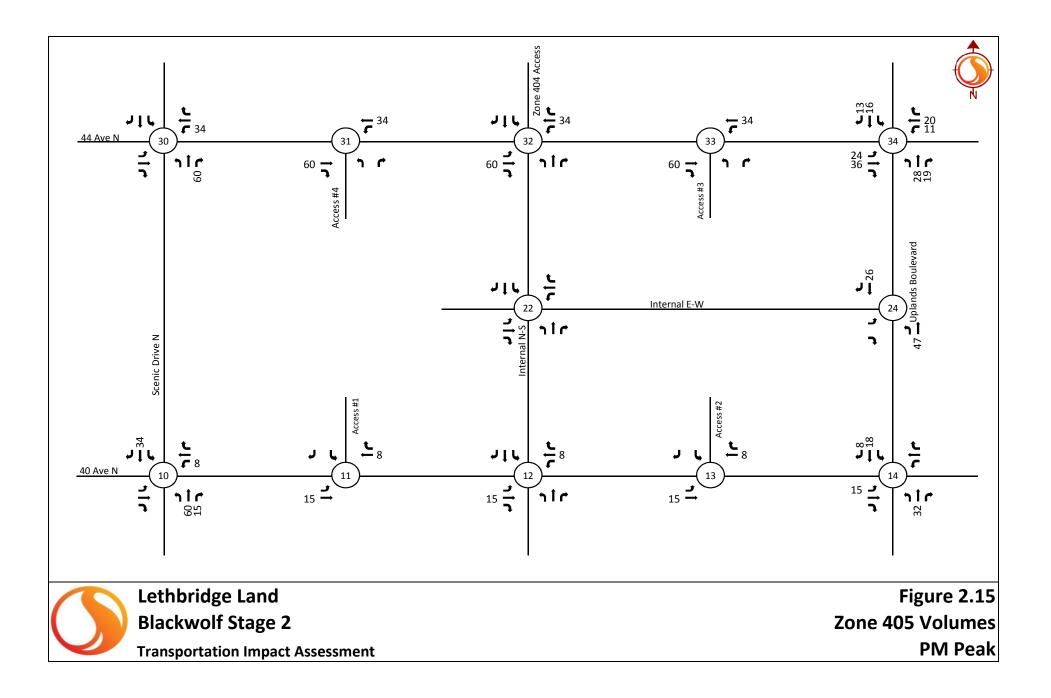


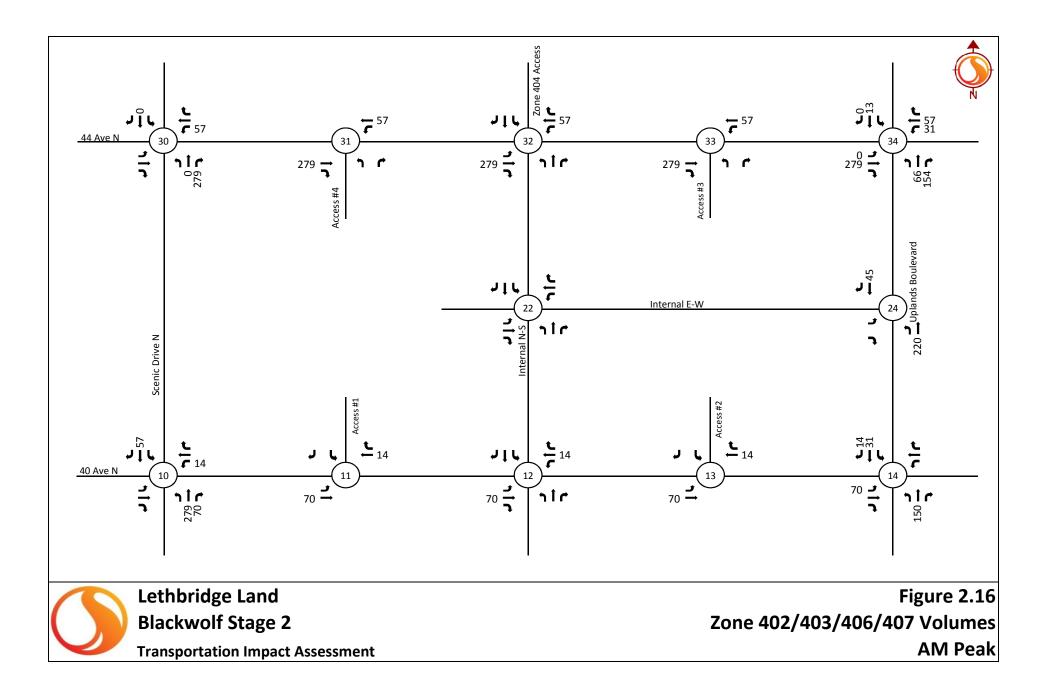


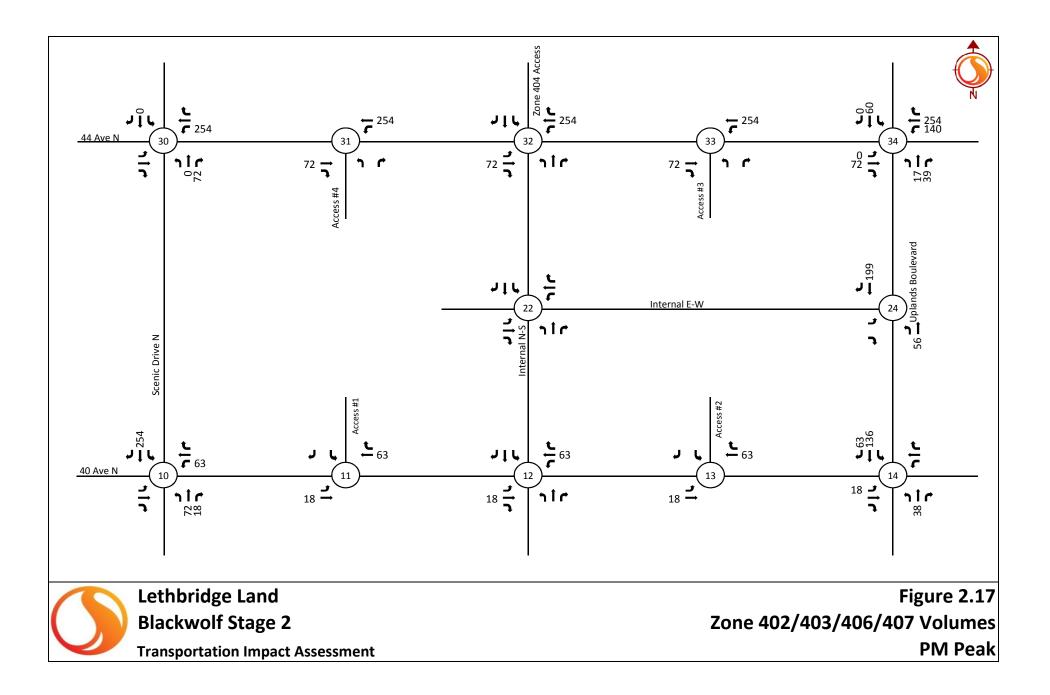


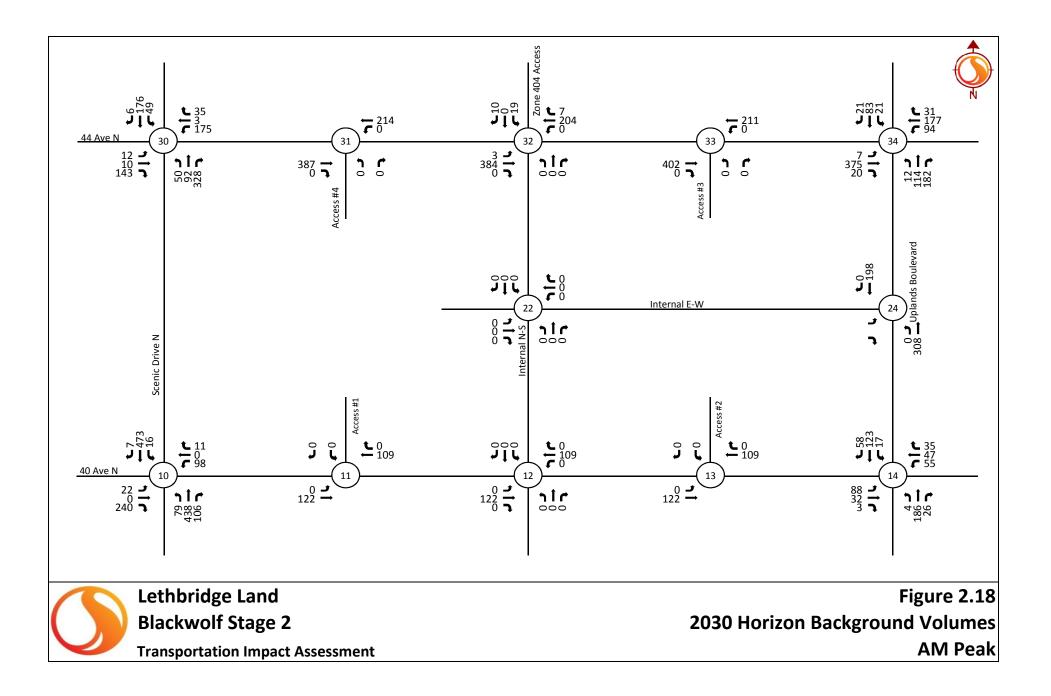


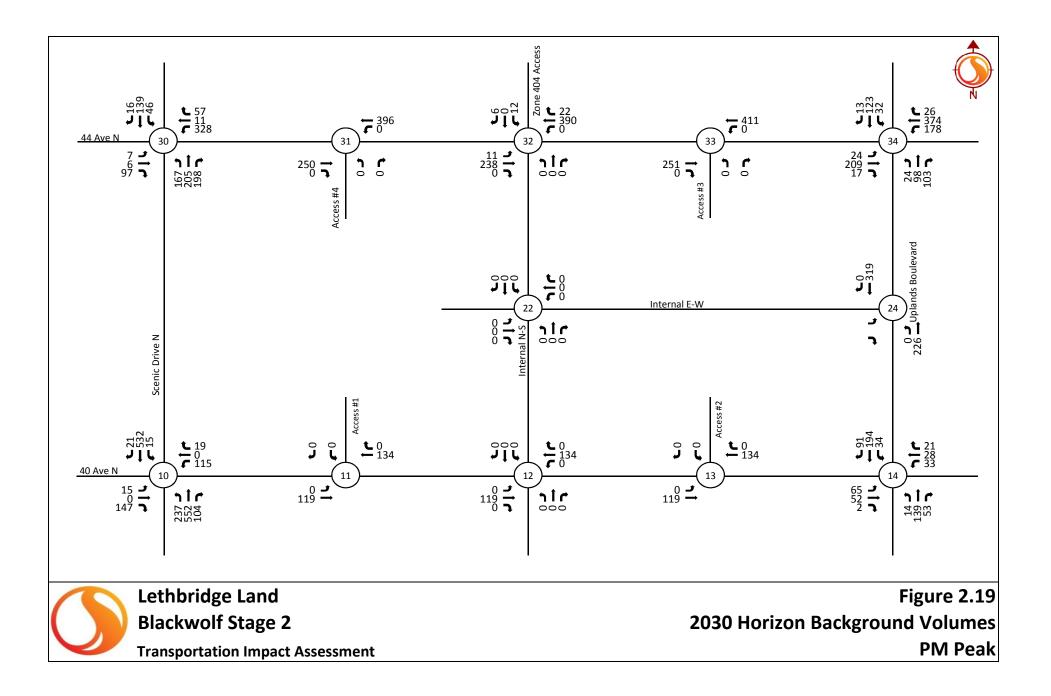












Development Proposal April 25, 2014

3.0 Development Proposal

3.1 PROPOSED DEVELOPMENT

The Blackwolf Stage 2 development will consist primarily of low and medium density residential uses. The total site area is approximately 59.8 HA. There is also a large regional park proposed for the south half of the development lands (south side of 40 Avenue/Blackwolf Boulevard, between Scenic Drive and Uplands Boulevard). **Outline Plan Figure 7.1** is included in **Appendix E** to illustrate the proposed land use designations for Blackwolf Stage 2.

Table 3.1 summarizes the proposed composition of the community within the Outline Plan area. The development intensities shown in Table 3.1 reflect the build out of the community.

Use	Intensity
Low Density Residential	345 units
Medium Density Residential	232 units
Regional Park	80 acres

Table 3.1 Development Summary

Traffic generated by the proposed development will access the road network via the seven community entrance roads. Accesses include three accesses onto the future 44th Avenue, three accesses onto the future 40 Avenue/Blackwolf Boulevard and one access onto Uplands Boulevard.

3.2 TRIP GENERATION

In assessing the trip-generating potential of the proposed development, the City of Lethbridge trip generation rates for low and medium density residential units (previously summarized in Table 2.1) were used for the residential uses. For the regional park the peak hour of the generator rate for Land Use 412: County Park from ITE Trip Generation, 9th Edition was applied. This use was selected because it has a definition consistent with the proposed regional park, and because there is an appropriate amount of data available for the use. Although, the peak hour of the generator rate may conservatively estimate the number of trips accessing the park during the study area adjacent street peak hour, it was applied to provide a small buffer in terms of the overall trip generation for the site. The trip generation rates for the regional park are summarized in **Table 3.2**.

Use	AM Peak	Hour		PM Peak Hour					
Use	Use		Out		In	Out			
Regional Park	0.52 vph/acre	71%	29%	0.59 vph/acre	35%	65%			

Table 3.2 Trip Rates for Regional Park

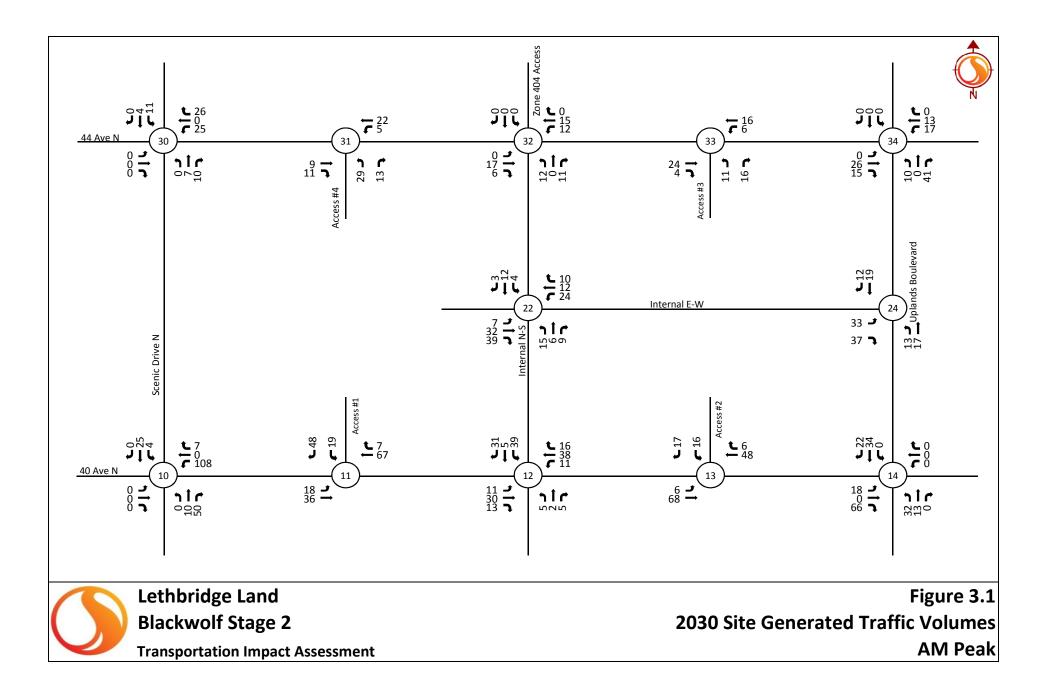
Development Proposal April 25, 2014

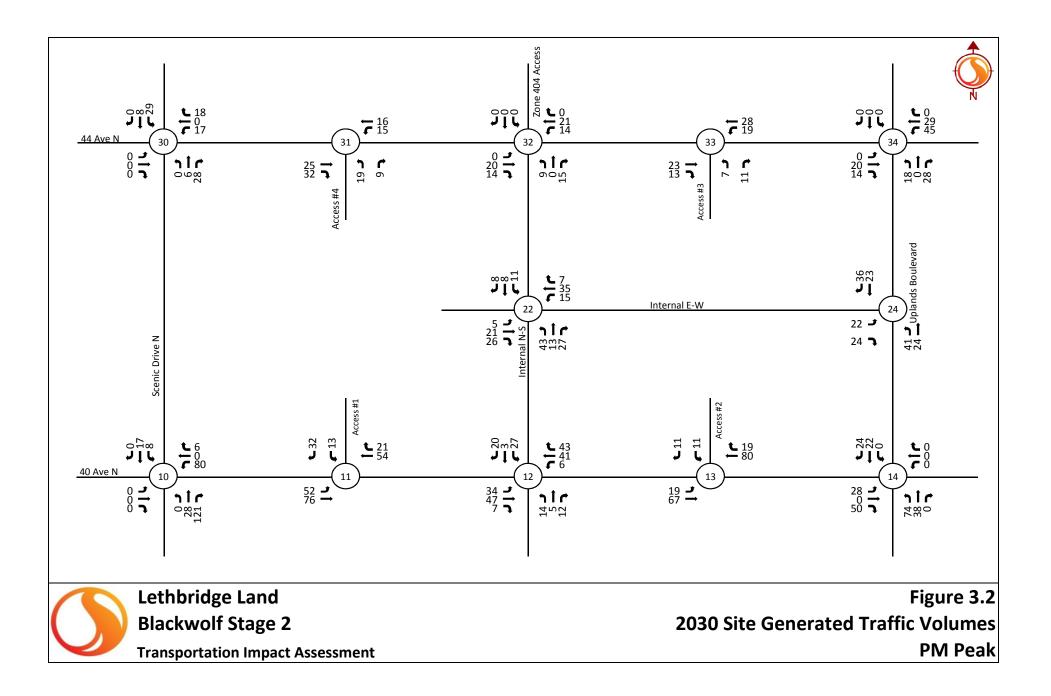
The number of trips for Blackwolf Stage 2 was estimated by applying the rates included in Table 2.1 and Table 3.2 to the development yields included in Table 3.1. The resulting 2030 horizon site generated trips for Blackwolf Stage 2 are summarized in **Table 3.3**.

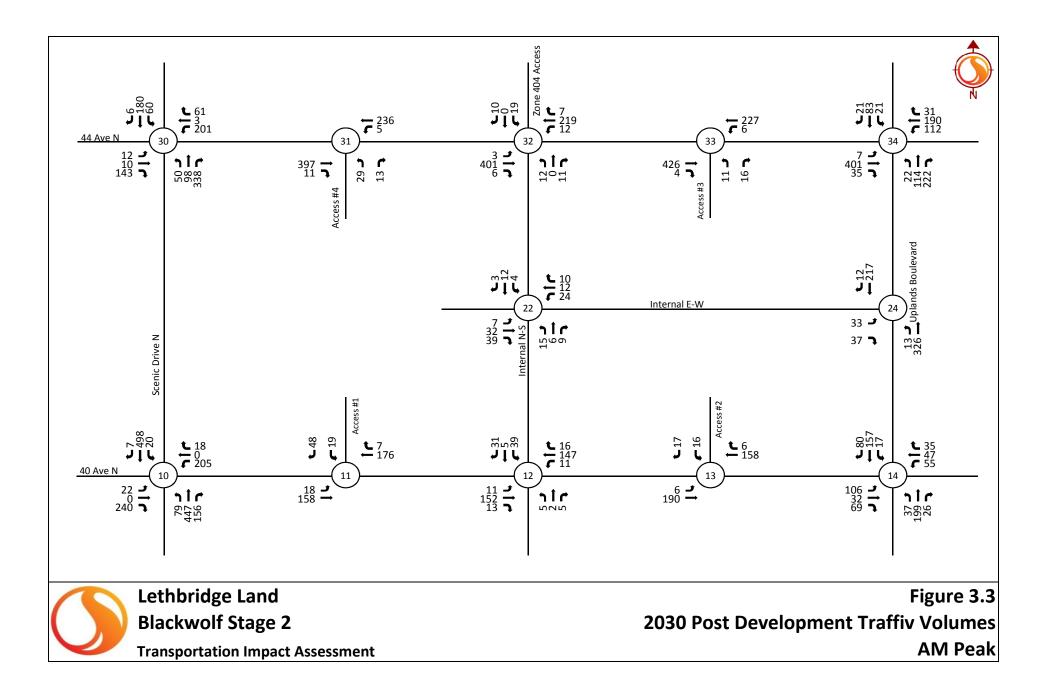
Zone		AM Peak		PM Peak							
2011e	Total	In	Out	Total	Total In						
Single Family	266	69	197	352	225	127					
Multi Family	174	50	124	213	130	83					
Regional Park	42	30	12	47	17	30					
Total	482	149	333	612	372	240					

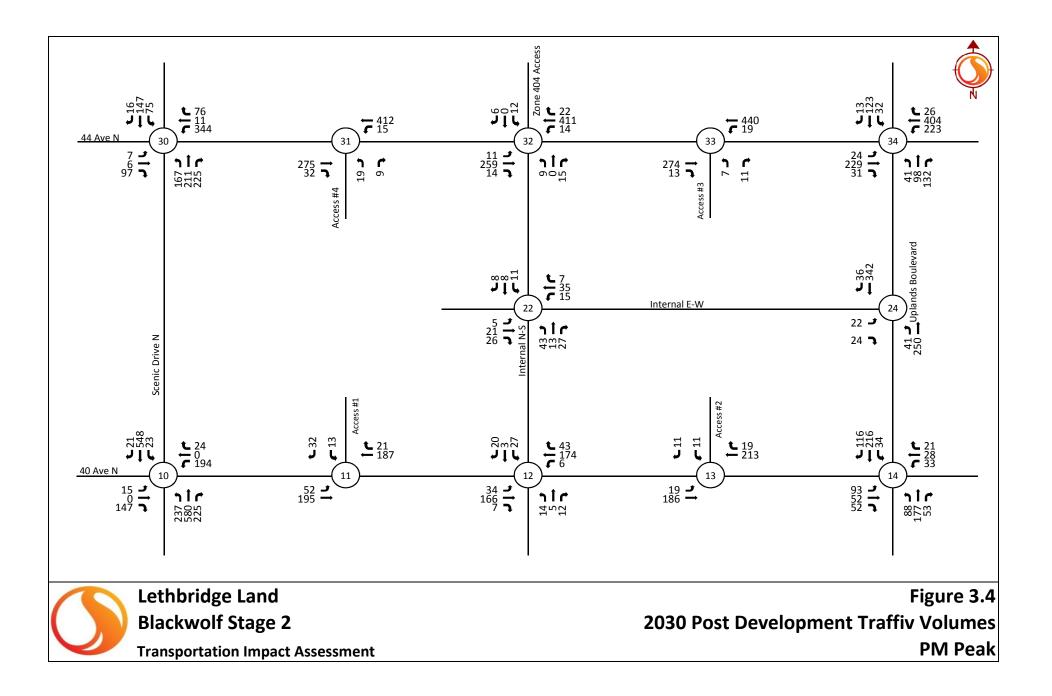
Table 3.3 Trip Generation – Blackwolf Stage 2

3.3 TRIP DISTRIBUTION AND ASSIGNMENT


The directional distribution patterns for trips generated by the development were established during the initial TIA sign-off period. The following summarizes the distribution patterns for the subject development:


- 40% to/from the Scenic Drive/26 Avenue Intersection (via Blackwolf Boulevard and Scenic Drive)
- 30% to/from the Scenic Drive/26 Avenue Intersection (via Uplands Boulevard)
- 20% to/from east 44 Avenue
- 10% to/from north 13 Street


The morning and afternoon peak hour traffic generated by the Blackwolf Stage 2 was assigned to the area road network based on the distribution patterns shown above. The 2030 horizon site generated traffic volumes are illustrated in **Figure 3.1** and **Figure 3.2**.


The residential and regional park site-generated traffic volumes were combined with the relevant background traffic volumes. The resulting 2030 horizon post development traffic volumes are illustrated in **Figure 3.3 Figure 3.4**.

Intersection Analysis April 25, 2014

4.0 Intersection Analysis

4.1 ANALYSIS CRITERIA

Analysis for conventional signalized/unsignalized intersections was undertaken using the Synchro 8 software package, which is based on the Highway Capacity Manual (HCM 2000). For unsignalized intersections, the methodology considers the intersection geometry, the traffic volumes, the posted speed limit and the type of intersection control. The average delay for each individual movement from the minor street, the major street left-turn movements and the overall intersection are calculated. An operation level of service (LOS) is then assigned based on the calculated average delay. Roundabout Analysis was performed using SIDRA Intersection 5. The level of service criteria for both signalized and unsignalized intersections is described in **Table 4.1**.

Lovel of	Average Con (seconds pe	•	
Level of Service	Signalized Intersection/ Roundabout	Unsignalized Intersection	Comment
А	10.0 or less	10.0 or less	Very good operation
В	10.1 to 20.0	10.1 to 15.0	Good operation
С	20.1 to 35.0	15.1 to 25.0	Acceptable operation
D	35.1 to 55.0	25.1 to 35.0	Congestion
Е	55.1 to 80.0	35.1 to 50.0	Significant congestion
F	More than 80.0	More than 50.0	Unacceptable operation
Breakdown	Very high	Very high	Conditions so poor that capacity calculations are meaningless

Table 4.1	Level	of Service	Criteria

4.2 2030 BACKGROUND OPERATING CONDITIONS

The operating conditions for the 2030 background horizon were analyzed for the morning and afternoon peak hours to determine configurations for the intersections within the scope area. The volumes illustrated in Figure 2.18 and Figure 2.19 were analyzed. Although it is recognized that Scenic Drive may be a full four lane arterial beyond 44 Avenue by 2030, for the analysis, it was assumed that Scenic Drive is constructed as a four-lane arterial road to the intersection with 40 Avenue only. All other roadways are assumed to be two-lane at the 2030 horizon. **Table 4.2** summarizes the results of the 2030 background horizon capacity analysis. The Synchro outputs for this scenario are included in **Appendix F**.

Intersection	Intersection Control	Interval	Measure		Eastbound	ł		Westbound	d	1	lorthboun	d	5	Southboun	d	Overall Intersection
Intersection	Device	interval	measure	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	LOS
			Volumes (vph)	12	10	143	175	3	35	50	92	328	49	176	6	
		AM	Level of Service		А		В	А		В	A			В		В
		Alvi	V/C Ratio by Movement 0.47			0.46	0.0	8	0.12	0.5	7		0.40		В	
44 Ave N / Scenic	Cignolized		Queue Length (in metres)		14		22	4		9	35	5		43		
Drive N	Signalized		Volumes (vph)	7	6	97	328	11	57	167	205	198	46	139	16	
		PM	Level of Service		В		С	А		В	В			В		В
		Pivi	V/C Ratio by Movement		0.46		0.77	0.1	3	0.36	0.5	5		0.31		В
			Queue Length (in metres)		16		68	8		0	10	2		46		
			Volumes (vph)	7	375	20	94	177	31	12	114	182	21	83	21	
		AM	Level of Service		В			В			В			В		В
			V/C Ratio by Movement		0.57			0.54			0.64			0.31		В
44 Ave N / Uplands	Cignolized		Queue Length (in metres)		55			43		35			19			
Blvd N	Signalized PM	Volumes (vph)	24	209	17	178	374	26	24	98	103	32	123	13		
		DM	Level of Service	А			С		С				С		с	
		Pivi	V/C Ratio by Movement		0.32			0.85			0.63			0.51		C
			Queue Length (in metres)		26			102			47			41		
			Volumes (vph)	22	5*	240	98	5*	11	79	438	106	16	473	7	
		AM	Level of Service		А			D		А	Α	А		С		В
		Alvi	V/C Ratio by Movement	C Ratio by Movement 0.57 0.78 0.19		0.19	0.48	0.13		0.70		— В				
40 Ave N / Scenic	Cignolized		Queue Length (in metres)		17			31		10	59	6		117		
Drive N	Signalized		Volumes (vph)	15	5*	147	115	5*	19	237	552	104	15	532	21	
		PM	Level of Service		А			E		А	В	А		В		В
		Pivi	V/C Ratio by Movement		0.45			0.87		0.52	0.54	0.12		0.73		В
			Queue Length (in metres)		18			46		34	102	6		164		
			Volumes (vph)	88	32	3	55	47	35	4	186	26	17	123	58	
		AM	Level of Service		В			А			В			В		В
		AIVI	V/C Ratio by Movement		0.21			0.23			0.34			0.31		В
40 Ave N / Uplands	e N / Uplands Four-way Stop		Queue Length (in metres)													
Blvd N	Conttrolled		Volumes (vph)	65	52	2	33	28	21	14	139	53	34	194	91	
		PM	Level of Service	B		A		В				В		В		
		FIVI	V/C Ratio by Movement		0.21			0.14		0.32			0.48			B
			Queue Length (in metres)													

Table 4.2 - 2030 Background Operating Conditions

<u>Notes:</u> 1. 95th percentile queues are based on Synchro results. 2. Manually added volumes: 5*

Intersection Analysis April 25, 2014

The results illustrated in Table 4.2 indicate the following:

- The <u>Blackwolf Boulevard (40 Avenue) / Scenic Drive N</u> intersection is expected to operate at acceptable levels of service during both the morning and afternoon peak hours as a signalized intersection. A designated northbound left turn lane was assumed to provide access to Hardieville and Legacy Ridge Stage 3. The following minimum storage lengths are recommended based on the analysis:
 - Northbound left turn lane 60 meters
- The <u>44 Avenue / Scenic Drive N</u> intersection was observed to be approaching capacity as an unsignalized intersection. Therefore the intersection was reviewed assuming signals are in place. Designated northbound and westbound left turn lanes were also identified for provision of access to/from zones 301, 404, and 405. Based on this configuration, the intersection is anticipated to operate at acceptable levels of service during both the morning and afternoon peak hours. The following minimum storage lengths are recommended based on the analysis:
 - Northbound left turn lane 60 meters
 - Westbound left turn lane 70 meters
- The <u>44 Avenue / Uplands Boulevard</u> intersection was observed to be over capacity as an unsignalized intersection. Therefore the intersection was reviewed assuming signals are in place. Based on this configuration, the intersection is anticipated to operate at acceptable levels of service during both the morning and afternoon peak hours.
- The <u>Blackwolf Boulevard / Uplands Boulevard</u> intersection was analyzed as a four way stop configuration since it is located at the intersection of two main collector roadways. Based on this configuration, the intersection is anticipated to operate at acceptable levels of service during both the morning and afternoon peak hours.

4.3 2030 POST DEVELOPMENT OPERATING CONDITIONS

The operating conditions for the 2030 post development horizon were analyzed for the morning and afternoon peak hours to determine configurations for the intersections within the scope area. The volumes illustrated in Figure 3.3 and Figure 3.4 were analyzed.

summarizes the results of the 2030 background horizon capacity analysis. The Synchro and SIDRA outputs for this scenario are included in **Appendix F**.

Intersection	Intersection Control	Interval	Measure		Eastbound	i		Westboun	d	١	lorthboun	d	5	Southboun	d	Overall Intersection
intersection	Device	intervar		Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	LOS
			Volumes (vph)	12	10	143	201	3	61	50	98	338	60	180	6	
		AM	Level of Service		В		D	A		Α	A			В		в
			V/C Ratio by Movement		0.53		0.68	0.1	6	0.10	0.5	2		0.35		
44 Ave N / Scenic	Signalized		Queue Length (in metres)		17		40	8		4	94			41		
Drive N	olghail200		Volumes (vph)	7	6	97	344	11	76	167	211	225	75	147	16	
		PM	Level of Service		В		D	A		Α	A			С		в
			V/C Ratio by Movement		0.46		0.80	0.1	6	0.38	0.6	0		0.47		D
			Queue Length (in metres)		16		74	9		17	39)		61		
			Volumes (vph)		397	11	5	236		29		13				
		AM	Level of Service		A			A			В					А
		AW	V/C Ratio by Movement		0.2	7	0	0.01			0.11					~
44 Ave N / Access #4	Stop-Controlled on		Queue Length (in metres)		0			0			3					
44 AVE N/ ACCESS #4	Access		Volumes (vph)		275	32	15	412		19		9				
		PM	Level of Service		A			A			в					^
		PIN	V/C Ratio by Movement		0.2	1	C	0.01			0.08					A
			Queue Length (in metres)		0			0			2					
			Volumes (vph)	3	401	6	12	219	7	12	5*	11	19	5*	10	
			Level of Service		Α	1		Α			С			С	1	
		AM	V/C Ratio by Movement		0.00			0.01			0.08			0.10		A
44 Ave N / Internal N-	Stop-Controlled on		Queue Length (in metres)		0			0			2			3		
S	Side Streets		Volumes (vph)	11	259	14	14	411	22	9	5*	15	12	5*	6	
			Level of Service		A			A		Ű	B	.0		C	Ū	
		PM	V/C Ratio by Movement		0.01			0.01			0.08			0.09		A
			Queue Length (in metres)		0			0			2			2		
			Volumes (vph)		426	4	6	227		11	_	16		_		
			Level of Service		A		Ŭ	Α			В	10				
		AM	V/C Ratio by Movement		0.2).01			0.07					A
	Stop-Controlled on		Queue Length (in metres)		0.2			0			2					
44 Ave N / Access #3	Access		Volumes (vph)		274	13	19	440		7	2	11				
			Level of Service		2/4 A		13	A 440		1	В					
		PM	V/C Ratio by Movement		0.1			0.02			0.04					A
			Queue Length (in metres)		0.1			0			1					
			Volumes (vph)	7	401	35	112	190	31	22	114	222	21	83	21	
			Level of Service	/	401 B	35	112	190 B	31	22	B	222	21	B	21	
		AM	V/C Ratio by Movement		0.63			0.64								В
			Queue Length (in metres)		67						0.71 42			0.29 19		
	Signalized		Volumes (vph)	24	229	31	223	56 404	26	41		132	32	123	13	
			Level of Service	24		31	223		20	41	98	132	32		13	
		PM	V/C Ratio by Movement		A			C			D			C		С
			Queue Length (in metres)		0.33 43			0.90 196			0.79 61			0.56 42		
			Volumes (vph)	7	401	35	112	190	31	00	114	222	04		21	
			Level of Service	/	401 B	35	B			22	B	222	21	83 B	21	
		AM	V/C Ratio by Movement		в 0.64		в 0.35	A 0.3			в 0.71			в 0.29		В
44 Ave N / Uplands	Signalized		Queue Length (in metres)		0.64 67		20	28			42			19		
Blvd N	(Upgraded		Volumes (vph)	24	229	31	20	404	26	41	42 98	132	32	123	13	
	Configuration)		Level of Service	24		31				41		132	32		13	
		PM	V/C Ratio by Movement		B		B	В			C			В		В
			Queue Length (in metres)		0.42		0.52 38	0.5			0.65 48			0.41 33		
			Volumes (vph)	-		05			1	00		000	C 1		0.1	
			Level of Service	7	401	35	112	190	31	22	114	222	21	83	21	
		AM	V/C Ratio by Movement		A			A			A			A		А
					0.54			0.38			0.57			0.17		
	Roundabout		Queue Length (in metres)		29			19			36			7		
			Volumes (vph)	24	229	31	223	404	26	41	98	132	32	123	13	
		PM	Level of Service		A			A			A			В		А
			V/C Ratio by Movement		0.43			0.72			0.37		0.38			
			Queue Length (in metres)		21			64			17			19		

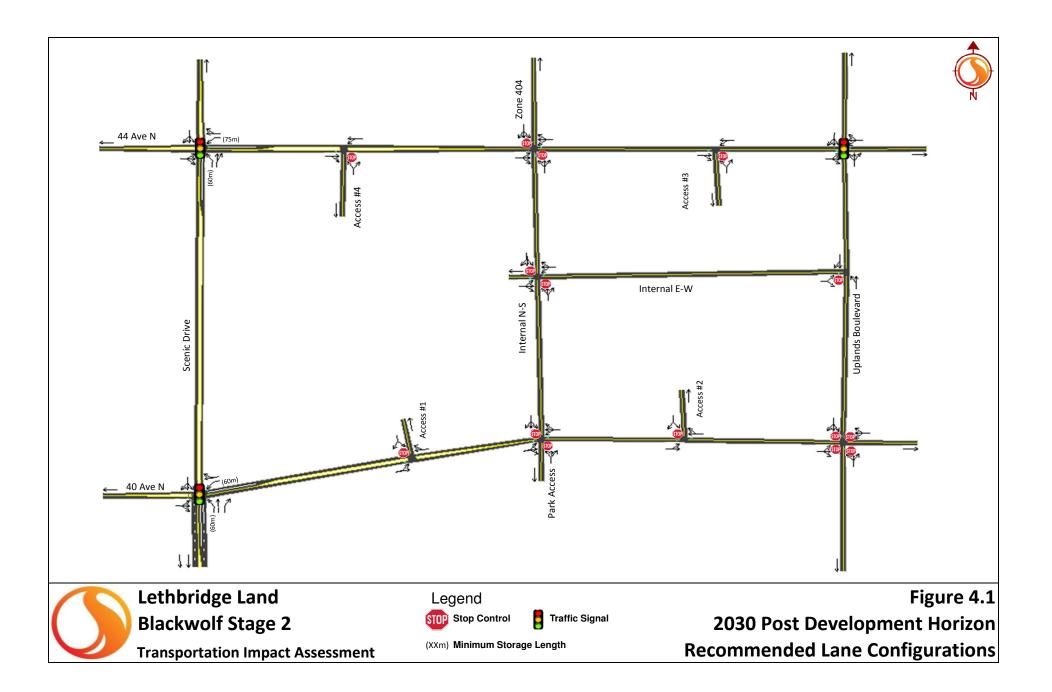
Table 4.3 - 2030 Post Development Operating Conditions

Notes: 1. 95th percentile queues are based on Synchro results. 2. Manually added volumes: 5*

la tana a tina	Intersection Control	lute most			Eastbound	i		Westboun	d	١	lorthboun	d		Southboun	d	Overall Intersection
Intersection	Device	Interval	Measure	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	LOS
			Volumes (vph)	7	32	39	24	12	10	15	6	9	4	12	3	
		AM	Level of Service		А			А			А			А		А
		7.000	V/C Ratio by Movement		0.01			0.02			0.04			0.03		
Internal E-W /	Stop-Controlled on		Queue Length (in metres)		0			0			1			1		
Internal N-S	Internal N-S		Volumes (vph)	5	21	26	15	35	7	43	13	27	11	8	8	
		PM	Level of Service		Α			Α			А			Α		А
		1 101	V/C Ratio by Movement		0.00			0.01			0.11			0.04		A
			Queue Length (in metres)		0			0			3			1		
			Volumes (vph)	33		37	13	326			217	12				
		AM	Level of Service		В			A			A					•
		AIVI	V/C Ratio by Movement		0.14		C	0.01			0.1					A
Internal E-W /	Stop-Controlled on		Queue Length (in metres)		4			0			0					
Uplands Blvd N	Internal E-W		Volumes (vph)	22		24	41	250			342	36				
			Level of Service		В			A			A					
		PM	V/C Ratio by Movement		0.12		0).04			0.2					A
			Queue Length (in metres)		3			1			0.2					
			Volumes (vph)	22	5*	240	205	5*	18	79	447	156	20	498	7	
			Level of Service	~~~	B	240	203 D	A		A	в	A	20	490 C	'	
		AM	V/C Ratio by Movement		0.67		0.81	0.0		0.22	0.53	0.21		0.79		С
10 Ave N/ Coopie			Queue Length (in metres)		22		42	5		14	85	9		167		
40 Ave N / Scenic Drive N	Signalized		Volumes (vph)					5*								
			Level of Service	15	5*	147	194	-	24	237	580	225	23	548	21	
		PM	V/C Ratio by Movement		В		E	В		В	В	A		С		В
			Queue Length (in metres)		0.59		0.85	0.0		0.60	0.62	0.26		0.85		
					21		54	7		38	125	10		194		
			Volumes (vph)	18	158			176	7	19		48				
		AM	Level of Service		A			A			В					A
			V/C Ratio by Movement	C	.02			0.1			0.10					
40 Ave N / Access #1	Stop-Controlled on Access		Queue Length (in metres)		0			0	1		3					
		Access		Volumes (vph)	52	195			187	21	13		32			
		PM	Level of Service		Α			A			В					А
			V/C Ratio by Movement	C	.04			0.1	4		0.08					
			Queue Length (in metres)		1			0			2					
			Volumes (vph)	11	152	13	11	147	16	5	2	5	39	5	31	
		AM	Level of Service		А			А			В			В		А
			V/C Ratio by Movement		0.01			0.01			0.02			0.14		
40 Ave N / Internal N-			Queue Length (in metres)		0			0			1			4		
S	Side Streets		Volumes (vph)	34	166	7	6	174	43	14	5	12	27	3	20	
		PM	Level of Service		А			А			В			В		А
		1 101	V/C Ratio by Movement		0.03			0.00			0.07			0.11		~
			Queue Length (in metres)		1			0			2			3		
			Volumes (vph)	6	190			158	6	16		17				
		AM	Level of Service		A			A			В					А
		AIVI	V/C Ratio by Movement	C	0.00			0.1	1		0.05					A
40 Aug NI / Aug and #0	Stop-Controlled on		Queue Length (in metres)		0			0			1					
40 Ave N / Access #3	Access		Volumes (vph)	19	186			213	19	11		11				
		514	Level of Service		A			A			В					
		PM	V/C Ratio by Movement	C	.02			0.1			0.04					A
			Queue Length (in metres)	Ì	0			0.1			1					
			Volumes (vph)	106	32	69	55	47	35	37	199	26	17	157	80	
			Level of Service		B			B			B			B		-
		AM	V/C Ratio by Movement		0.38			0.26			0.46			0.44		В
40 Ave N / Uplands	Four-way Stop		Queue Length (in metres)	l	0.00			5.20			0.40			0.77		
Blvd N	Conttrolled		Volumes (vph)	93	52	52	33	28	21	88	177	53	34	216	116	
			Level of Service		52 B	52		B	'	00	C	00		210 B		
		PM	V/C Ratio by Movement	1	0.39			0.17			0.57			0.63		В
			Queue Length (in metres)	ł	0.39			0.17			0.07			0.03		
			Goode Longin (in metres)	1												

Table 4.3 - 2030 Post Development Operating Conditions Continued

<u>Notes</u>: 1. 95th percentile queues are based on Synchro results. 2. Manually added volumes: 5*


Intersection Analysis April 25, 2014

The results illustrated in Table 4.3 indicate the following:

- The <u>Blackwolf Boulevard (40 Avenue) / Scenic Drive N</u> intersection requires addition of a westbound left turn lane to accommodate the development of Blackwolf Stage 2. Based on this configuration, the intersection is anticipated to operate at acceptable levels of service during both the morning and afternoon peak hours. The following minimum storage lengths are recommended based on the analysis:
 - Northbound left turn lane 60 meters
 - Westbound left turn lane 60 meters
- The <u>44 Avenue / Scenic Drive N</u> intersection will continue to operate at acceptable levels of service during both the morning and afternoon peak hours. The following minimum storage lengths are recommended based on the analysis:
 - Northbound left turn lane 60 meters
 - Westbound left turn lane 75 meters
- The <u>44 Avenue / Uplands</u> intersection will continue to operate at acceptable levels of service during both the morning and afternoon peak hours. The analysis indicated that there will be notable westbound queuing (approaching 196m) during the afternoon peak hour. Based on this observation, the intersection was also analyzed using two additional configurations: first, with an added westbound left turn lane; second, with a single lane roundabout.
- Based on the results of the analysis for the two additional configurations, the intersection is anticipated to operate at an acceptable level of service during both the morning and afternoon peak hours. The following minimum storage length is recommended for the westbound left turn lane based on the analysis:
 - Westbound left turn lane 60 meters
- The <u>Blackwolf Boulevard / Uplands Boulevard</u> intersection will continue to operate at acceptable levels of service during both the morning and afternoon peak hours.
- The internal intersections were analyzed assuming stop control on the minor/side-street approach (i.e. the approach onto either Blackwolf Boulevard, Uplands Boulevard, or 44 Avenue. The intersection in the middle of the development (identified as 'intersection 22' on the figures) was analyzed with stop control on the north and south legs of the intersection. Based on these configurations, all internal intersections are anticipated to operate at acceptable levels of service during both the morning and afternoon peak hours.

The recommended 2030 horizon post development lane configurations are shown in Figure 4.1.

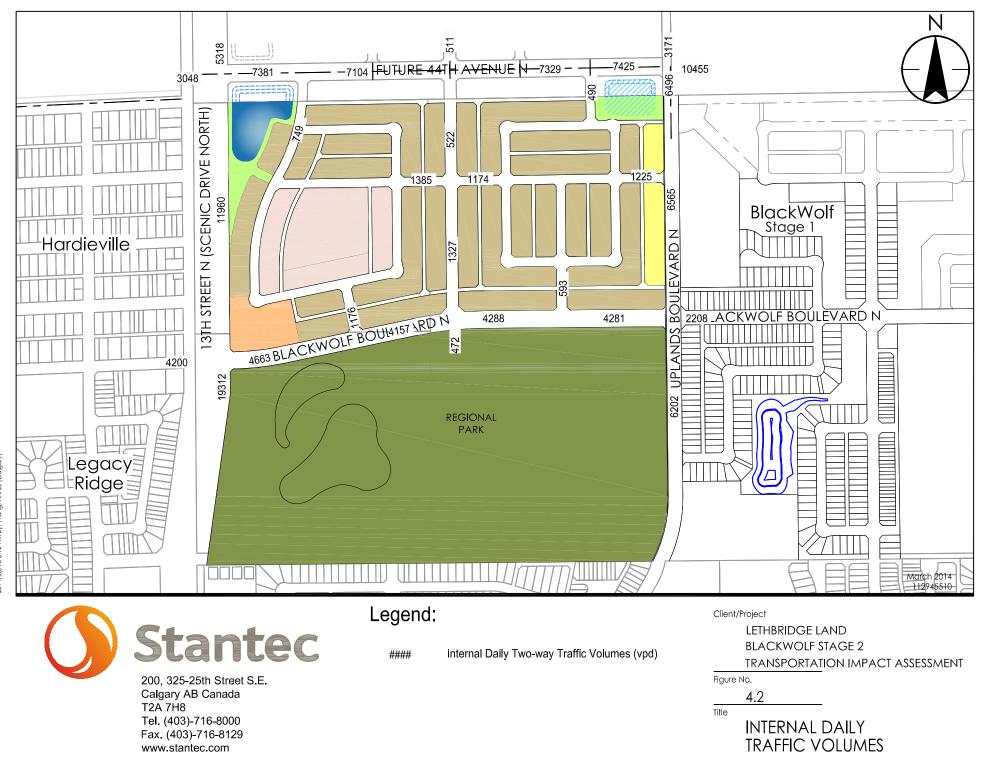
wa v:\1136\active\112945510\02_planning\02_report\20140321_report\140425_blackwolf_stage_2_tia_update.docx

Intersection Analysis April 25, 2014

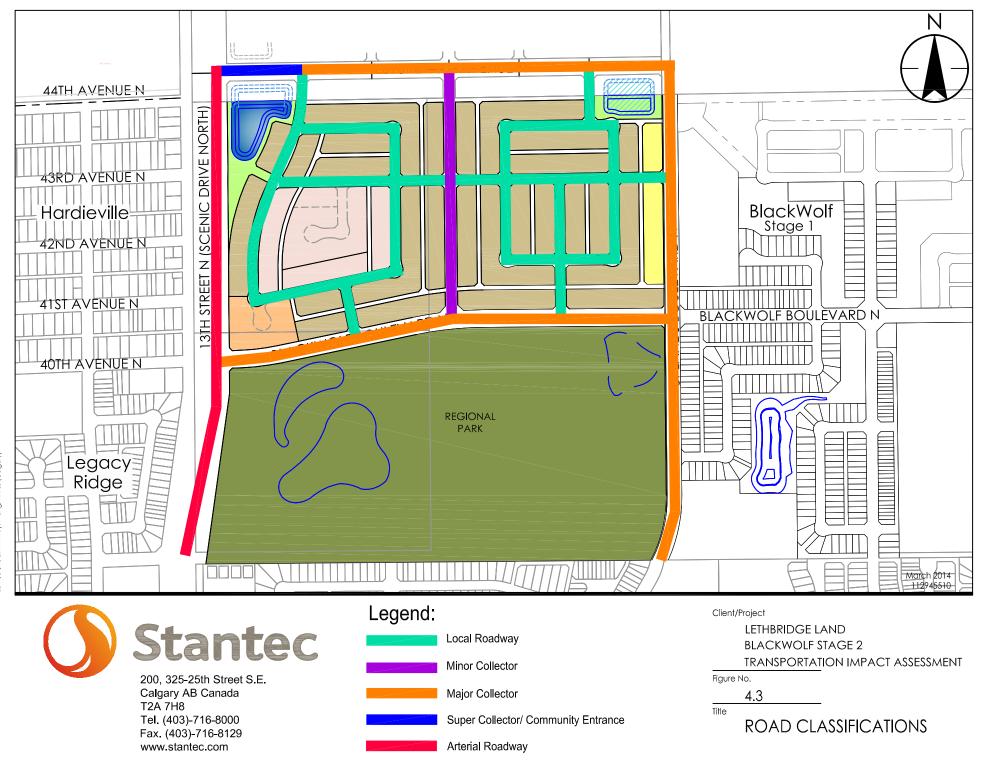
4.4 INTERNAL ROAD NETWORK CLASSIFICATION

The daily traffic volumes on the area road network were estimated by applying a factor of 10 to the PM peak hour volumes. Figure 4.2 illustrates the projected daily traffic volumes for the 2030 post development horizon.

The City of Lethbridge Design Guidelines classifies roadways into designations with the following daily vehicular traffic volumes:


- Arterial: > 15,000 vehicles per day (vpd)
- Super Collector: 2,000 15,000 vpd
- Community Entrance Road: 2,000 8,000 vpd
- Major Collector: 2,000 8,000 vpd
- Minor Collector Road: < 4,000 vpd
- Local Road: < 2,000 vpd

Based on the Outline Plan and the projected daily traffic volumes, the proposed roadway classifications are shown in **Figure 4.3**.


Scenic Drive N and 44 Avenue N fall within the recommended daily volume ranges for their classifications (Arterial and Super Collector, respectively). Uplands Boulevard and Blackwolf Boulevard fall within the range for a Major Collector roadway.

The section of Blackwolf Boulevard (40 Avenue) running through Blackwolf Stage 2 (at the north boundary of the regional park) could be considered for a potential community entrance road or custom standard if desired to enhance the atmosphere surrounding the park; however the road should be designed with characteristics/standards equivalent to a major collector, within a reasonable tolerance. The designated westbound left turn lane onto Scenic Drive should be maintained regardless of what standard is selected.

The internal roads within the development all fall within the recommended daily volume range for a local road. Consideration was made towards applying a minor collector standard in some locations, and ultimately was applied for the north/south road which connects Blackwolf Boulevard to 44 Avenue.

V:\1136\Active\112945510\02_planning\02_report\20140321_report\pdf\CAD\fig.dwg 2014/03/18 5:12 PM By: Wang, Annie (Calgary)

Transit and Active Modes April 25, 2014

5.0 Transit and Active Modes

5.1 ACTIVE MODES CONSIDERATIONS

The proposed development is a greenfield site and will have pedestrian and cycling facilities implemented to facilitate active transportation in the area. At present 13 Street N (future Scenic Drive), the western border of the proposed development, has been constructed and is open to travelers.

Identifying destinations within a set walking or cycling distance allows for an assessment of the accessibility and potential for interaction within an area. Evaluating accessibility, as opposed to assessing mobility with transportation engineering measurements such as Level of Service and v/c ratios, enables a better understanding of the needs of active modes travelers (transit, cycle, walking) in the area.

The Blackwolf Stage 2 proposed regional park is located on the south side of the outline plan area. The park is proposed to include a network of walking / cycling paths. The proposed network would include key connections across the boundary road network surrounding the park. A regional multi-use pathway is proposed along the northern and southern edges of the park. This will provide cycling and walking connectivity between Scenic Drive and Uplands Boulevard, also connecting the communities and amenities that serve them. A north-south multi-use pathway along Scenic Drive provides arterial cycling connectivity. **Outline Plan Figure 6.1** is included in Appendix E to illustrate the proposed Open Space Network.

Access to trails which run through the coulee adjacent the old man river exist within 1 km of the southwest boundary of the site. The access is located off Marie Van Haarlem Crescent in Legacy Ridge with potential existing accesses being implemented in Stage 3 of Legacy Ridge.

5.2 LOCAL TRANSIT SERVICE

The City of Lethbridge currently provides local transit service along Scenic Drive and the existing leg of Uplands Boulevard. Route 31 services lands adjacent to the proposed development. This route could be modified in a simple manner to serve the proposed community as well as those communities surrounding the proposed development. **Figure 5.1** highlights Route 31.

Transit and Active Modes April 25, 2014

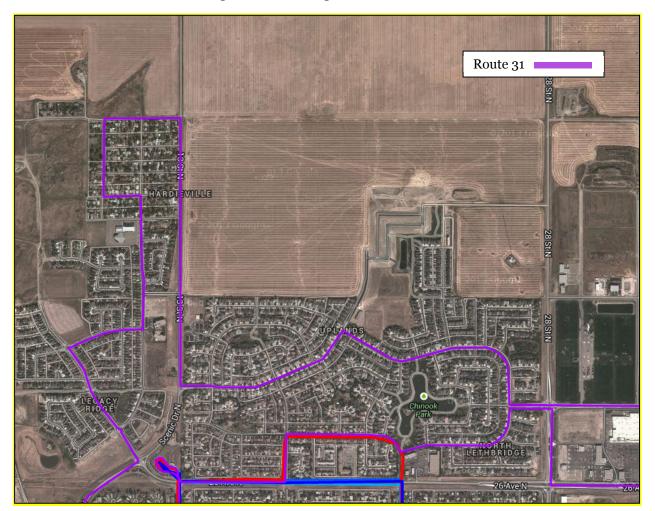


Figure 5.1 Existing Transit Network

Conclusions April 25, 2014

6.0 Conclusions

The area road network was reviewed at the 2030 horizon based on the peak hour traffic volumes estimated using the methodologies described in the report. The following roads have been assumed to be constructed by the full-build horizon (2030):

- 44 Avenue from Scenic Drive to East of Uplands Boulevard (2-lane cross-section)
- 40 Avenue from Scenic Drive to Uplands Boulevard (2-lane cross-section)
- Uplands Boulevard from 40 Avenue to North of 44 Avenue (2-lane cross-section)

The results of the 2030 Horizon analysis suggested the following for each of the intersections reviewed:

- 40 Avenue (Blackwolf Boulevard)/Scenic Drive: the intersection is expected to operate at an acceptable level of service as a signalized intersection. A designated westbound left turn lane should be added to support development of Blackwolf Stage 2.
- 44 Avenue/Scenic Drive: the intersection is expected to operate at an acceptable level of service as a signalized intersection. Designated northbound and westbound left turn lanes should be considered to accommodate traffic demand for zones 301, 404, and 405.
- 44 Avenue/Uplands Boulevard: the intersection is expected to operate at an acceptable level of service as a signalized intersection. The analysis suggested there is potential for queuing on the westbound approach to the intersection. Consideration should be made towards implementing one of the alternatives suggested in the analysis (i.e. a single lane roundabout or addition of a designated westbound left turn lane) as a means of mitigating the potential for queuing.
- Blackwolf Boulevard/Uplands Boulevard: the intersection is expected to operate at an acceptable level of service as a four-way stop intersection.
- All Blackwolf Stage 2 internal area intersections were shown to operate within acceptable operational parameters as unsignalized intersections.

Conclusions April 25, 2014

A review of the proposed road classifications was also undertaken. Scenic Drive N is classified as an arterial roadway. 44 Avenue is classified as a super collector. Uplands Boulevard and Blackwolf Boulevard (40 Avenue) are both classified as major collector roadways. Consideration may be given to implementing an "entrance road" standard or some type of custom standard to Blackwolf Boulevard within the outline plan boundary (running along the north side of the proposed regional park). These alternative classifications would be suitable, although the proposed road should be designed with equivalent standards to a major collector. Also, the ability to implement a designated westbound left turn lane onto Scenic Drive is recommended. The north/south road which connects Blackwolf Boulevard to 44 Avenue was recommended as a minor collector. All other internal roadways are recommended to local classification. Consideration for implementing minor collector standards to the internal roadways could be made, although standards above local are not warranted based on the analysis.

Appendix A Correspondence with City of Lethbridge April 25, 2014

Appendix A Correspondence with City of Lethbridge

To: Subject: Wang, Annie (Calgary) RE: Blackwolf Stage 2 TIA

From: Ahmed Ali [mailto:Ahmed.Ali@lethbridge.ca]
Sent: Tuesday, April 08, 2014 2:29 PM
To: Piechotta, Cole
Cc: Huber, Devin; Barry Peat; Joydip Majumder
Subject: RE: Blackwolf Stage 2 TIA

Cole,

We have reviewed the TIA and have a few minor comments:

- Section 4.3 including Table 4.3
 - o Comment on long queue lengths i.e., 44 Ave N/Uplands Blvd W 196 m
 - The 60m left turn bay length recommended for the WB left turn at 44 Av N/Scenic Dr N is shorter than the post dev queue length of 74m in Table 4.3
- Show turn lane lengths in Figure 4.1
- Figure 4.3: Road classification
 - 44 Ave N to be Super Collector/Community Entrance up to the first connection east of Scenic Dr N with the remaining being shown as a major collector road
 - The N-S road in the center of the OP area shall be a minor collector road (will make good sense for a good network planning)

Please revise the report and send an electronic copy. Thank you, Ahmed

From: Piechotta, Cole [mailto:Cole.Piechotta@stantec.com] Sent: March-21-14 6:17 PM To: Ahmed Ali Cc: Huber, Devin Subject: Blackwolf Stage 2 TIA

Ahmed,

Please find attached the TIA for Blackwolf Stage 2, which Stantec/RELD have included as a component of the Gate 4 Submission for the Outline Plan.

We will be couriering hard copies to you next week.

If you have questions or comments, please don't hesitate to contact me.

Regards,

Cole

Cole Piechotta, **P.Eng.** Transportation Engineer

Stantec 200 - 325 25th Street SE Calgary AB T2A 7H8 Phone: (403)716-1462 Cell: (403)614-2305 Fax: (403)716-8129

cole.piechotta@stantec.com

Design with community in mind

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

Wang, Annie (Calgary)

From:	Ahmed Ali <ahmed.ali@lethbridge.ca></ahmed.ali@lethbridge.ca>
Sent:	Thursday, February 13, 2014 10:01 AM
То:	Piechotta, Cole
Cc:	Huber, Devin; Schmidtke, Brad; Wang, Annie (Calgary)
Subject:	RE: Blackwolf Stage 2 TIA Initial Sign-Off

Cole,

Here are a few comments on the scope and assumptions:

- 44 Ave N will be in place in the 10 year horizon
- Traffic to/from east of 26 Ave N will have multiple routes to use e.g., east to/from 44 Ave N, east to/from Blackwolf Blvd N and south to/from Uplands Blvd N. Please make appropriate changes to the trip distribution.

I am OK with other assumptions.

Thank you, Ahmed

From: Piechotta, Cole [mailto:Cole.Piechotta@stantec.com]
Sent: January-31-14 11:42 AM
To: Ahmed Ali
Cc: Huber, Devin; Schmidtke, Brad; Wang, Annie (Calgary)
Subject: Blackwolf Stage 2 TIA Initial Sign-Off

Ahmed,

Please review the following proposed scope for the TIA for Blackwolf Stage 2. As discussed last week, we would appreciate a quick turnaround as we're trying to complete the study asap. If we can finalize this scope by next Friday (Feb. 7) I'd really appreciate it.

Items which may require a brief phone conversation to finalize include the following:

- Trip generation assumptions related to the regional park
- Staging of the development and timing for 44 Avenue
- Requirements for cycling and transit within the TIA

Proposed scope is as follows:

Review Subject

1. Site plan, development statistics:

Characteristics of the development are as follows:

- 345 low density units (R-L land use)
- 33 medium density units (R-CM land use)

- 33 medium density units (R-37 land use)
- 166 mixed/medium density units (R-M) land use
- 345 low density units
- 232 medium density units

Attached for reference is Figure 7.1 Proposed Land Use Designations from the gate 3 submission.

2. Traffic impact study area:

Location: north of Uplands Community, west of BlackWolf Stage 1, east of Scenic Drive North (current 13 Street North), south of future 44 Avenue North.

The attached **Figure 2.2 Neighborhood Context Plan** from the gate 3 submission, illustrates the proposed site location within the context of North Lethbridge. The intersections we propose to review have been clouded. These include five intersections on Blackwolf Boulevard, five intersections on 44 Avenue, one intersection on Uplands Boulevard between Blackwolf Boulevard and 44 Avenue, and one intersection in the middle collector road between Blackwolf Boulevard and 44 Avenue.

3. Traffic analysis period(s):

The weekday AM and PM peak hour period volumes will be analyzed. Daily Traffic Volumes will also be considered in order to confirm roadway classifications.

4. Planning horizons:

A ten-year and a full-build horizon will be studied. Phasing details are to be confirmed in gate 4. Because timing for 44 Avenue may not be known at this time, we propose assumptions for the ten-year horizon includes developments of Blackwolf (City Zone 409) and Blackwolf 2 (Zone 408), with access primarily taken from Blackwold Boulevard and Uplands Boulevard. The full-build horizon in this case will include additional traffic related to zones 301, 404, 405 and a potential construction of 44 Avenue.

5. Trip generation factors: (review also pass-by, diverted and synergy trip rates):

The following trip generation rates will be used:

Use	AM Peak	Hour		PM Peal	(Hour		
036		In	Out		In	Out	
Low Density Residential	0.77 vph/unit	26%	74%	1.02 vph/unit	64%	36%	
Medium Density Residential	0.75 vph/unit	29%	71%	0.92 vph/unit	61%	39%	

*Assumptions related to the regional park to be confirmed.

Daily traffic volumes will be estimated by applying a factor of 10 to the PM peak hour volumes.

6. Basis for Trip Distribution:

For the ten-year horizon:

- 50% to/from east 26 Avenue (via 13 Street)
- 40% to/from south Scenic Drive
- 10% to/from north 13 Street

For the full-build horizon:

- 40% to/from east 26 Avenue (via 13 Street)
- 30% to/from south Scenic Drive
- 20% to/from east 44 Avenue
- 10% to/from north 13 Street

*some of the traffic to/from east 26 Avenue and south Scenic Drive will be assigned to the Uplands Boulevard entrance north of 26 Avenue

7. Source for Future Background Traffic:

Similar to the 13 Street North/Hardieville Access Management Study:

- Background traffic related to Legacy 1, Legacy 3, and Blackwolf will be based on previous TIAs
- Background traffic related to additional developments north of 44 Avenue will be based on City population and employment forecasts

8. Assumed Road Improvements:

Assumed the following road network at the ten-year horizon:

- Scenic Drive North (13 Street) has a two-lane section
- Blackwolf Boulevard connection to Scenic Drive North (north side of park) constructed (TIA to confirm requirements for this road)
- Access to the development via Blackwolf Boulevard and Uplands Boulevard to/from the south is available

Assumed the following additions to the road network at the full-build horizon:

- Connections to/from 44 Avenue available
- 9. Traffic Analysis Software:

Synchro 8 will be used to analyze signalized and unsignalized intersections; SIDRA Intersection 5.1 will be used to analyze roundabouts if required.

Data Collection

1. Existing Traffic Counts:

The subdivision is located on an undeveloped parcel of land in North Lethbridge, and therefore it is not anticipated that additional counts of existing intersections will be required for analysis purposes.

2. Signal Timings:

It is not anticipated that existing signal timings will be required for the study.

3. Bicycle Route Map:

See attached "Figure 6.1 Open Space Network" from our gate 3 submission, which illustrates the local pathway system with connections to the regional system.

4. Bus Routes and Signs:

Transit routes are preferably placed on public collector roads. A route maybe placed on a local road either temporarily or permanently depending on the circumstance and at the discretion of the Transit Manager. Transit routes and stop locations will be determined as the neighbouhood develops and may be subject to change.

We would like to confirm TIA requirements for for cycling and transit: how much additional information should be included in the TIA? Can we reference the outline plan and the plans for the regional park or should we be including details within the TIA?

5. Local Parking Issues:

Consideration of parking along major collector roadways to ensure access to higher standard adjacent roads (Arterial and Super Collectors) is compliant with City standards.

6. Local Traffic Issues:

Review of site access road standards to ensure proper intersections and transitions are planned and to ensure that development roadways are engineered to function properly and as required.

Regards,

Cole

Cole Piechotta, P.Eng.

Transportation Engineer

Stantec 200 - 325 25th Street SE Calgary AB T2A 7H8

Phone: (403)716-1462 Cell: (403)614-2305 Fax: (403)716-8129

cole.piechotta@stantec.com

Design with community in mind

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

Appendix B Existing Traffic Count Information April 25, 2014

Appendix B Existing Traffic Count Information

											ANSPU	RIAII	JN DAI	A CORP										
Location	12 Street &	40 Avenue											Date	Wednesday	7 Mardh 20	12			Observers	MH				
			FROM THE				I			SOUTH on	I		1			E EAST on			I			E WEST on		1
time				Street						Street						venue						venue		
ending	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE
7:15	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
7:30	0	0	0	0	0	0	1	0	1	1	0	0	1	0	0	1	0	0	0	1	1	0	2	0
7:45	1	0	0	0	0	0	1	1	1	2	0	0	1	0	0	0	0	0	0	2	0	0	0	0
8:00	0	1	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0
8:15	0	0	1	0	0	0	1	2	2	4	0	0	0	1	1	0	0	0	0	2	1	0	0	0
8:30	0	1	0	0	0	0	0	3	2	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
8:45	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0
9:00	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0
2 hr total	1	3	1	0	0	0	4	8	7	11	0	0	5	2	1	1	0	0	0	9	2	0	3	0
		5		0%				19		58%			-	8		13%			-	11		0%		-
peak hour	1	2	1				3	6	6				2	1	1				0	6	1			
		4						15						4						7				
4:15	0	1	0	0	0	0	2	1	1	3	0	0	1	0	1	0	0	0	0	2	1	0	0	0
4:30	0	2	0	0	0	0	3	1	0	0	0	0	0	2	0	0	0	0	0	1	0	0	0	0
4:45	0	1	0	0	1	0	0	2	1	1	1	0	1	1	0	1	0	0	0	0	0	0	1	0
5:00	0	1	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15	0	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30	2	2	0	0	0	0	2	1	1	0	0	0	0	4	1	0	1	0	0	1	1	0	0	0
5:45	2	0	0	0	0	0	0	2	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
6:00	0	0	0	0	0	0	2	0	1	0	0	0	1	0	1	0	1	0	0	0	3	0	1	0
2 hr total	4	8	0	0	1	0	9	9	7	6	1	0	4	7	3	1	2	0	0	4	5	0	2	0
		12		0%				25		24%				14		7%				9		0%		
peak hour	4	3	0				4	4	3				2	4	2				0	1	4			
		7						11						8						5				
4 hour	5	11	1				13	17	14				9	9	4				0	13	7			
total		17						44						22						20				

										ME2 TR	ANSPO	RTATIC	DN DAT	A CORP										
Location	13 Street &	41 Avenue											Date	Wednesday	7 Mardh 20	12			Observers	LM				
time			FROM THE 13 S						FROM THE 13 S				I		FROM TH				I		FROM TH 41 A	E WEST on venue		
endina	IT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE
7:15	0	5	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0
7:30	0	14	0	1	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0
7:45	0	21	0	4	0	0	2	6	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0
8:00	0	14	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0
8:15	0	19	0	3	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	3	0	1	0
8:30	0	11	0	1	0	0	3	3	0	2	0	0	0	0	0	0	0	0	0	0	4	0	0	0
8:45	0	17	0	1	0	0	3	11	0	2	0	0	0	0	0	0	0	0	1	0	2	0	0	0
9:00	0	9	0	1	0	0	2	3	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0
2 hr total	0	110	0	11	0	0	10	44	0	4	0	0	0	0	0	0	0	0	1	0	35	2	1	0
		110		10%				54		7%				0		#DIV/0!				36		6%		
peak hour	0	68	0				2	19	0				0	0	0				0	0	17			
		68						21						0						17				
4:15	0	17	0	3	0	0	7	25	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
4:30	0	11	0	0	0	0	2	13	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
4:45	0	10	1	0	0	0	0	18	0	0	0	0	0	0	0	0	0	0	0	0	4	0	2	0
5:00	0	12	1	2	0	0	5	19	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
5:15	0	17	0	1	0	0	6	26	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
5:30	0	11	0	0	0	0	1	34	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
5:45	0	12	0	1	0	0	5	16	0	1	0	0	0	0	0	0	0	0	0	0	3	0	0	0
6:00	0	10	0	0	0	0	1	15	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
2 hr total	0	100	2	7	0	0	27	166	0	1	0	0	0	0	0	0	0	0	0	0	14	1	3	0
		102		7%				193		1%				0		#DIV/0!				14		7%		
peak hour	0	52	1				17	95	0				0	0	0				0	0	7			
		53						112						0						7				
4 hour	0	210	2				37	210	0				0	0	0				1	0	49			
total		212						247						0						50				

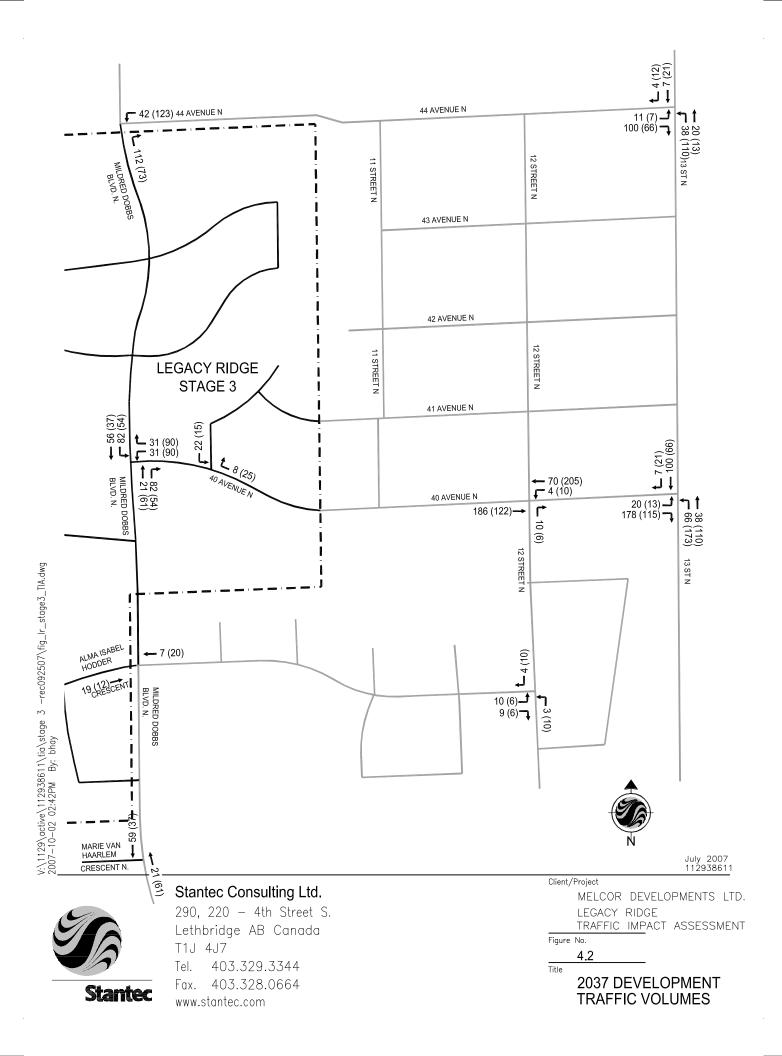

											ANGEU			A CORF	•									
Location	13 Street & 4	42 Avenue											Date	Wednesday	7 Mardh 20	12			Observers	BP				
			FROM THE	NORTH on					FROM THE	SOUTH on			I		FROM TH	E EAST on			I		FROM TH	E WEST on		1
time			13 S	treet					13 5	Street					42 A	/enue					42 A	venue		
ending	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE
7:15	0	5	0	1	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0
7:30	0	8	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	6	1	2	0
7:45	0	15	0	3	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0
8:00	0	7	0	0	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0
8:15	0	15	0	3	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	7	1	2	0
8:30	0	7	0	0	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0
8:45	0	15	0	1	0	0	3	9	0	4	0	0	0	0	0	0	0	0	0	0	3	0	0	0
9:00	0	5	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	4	0	1	0
2 hr total	0	77	0	9	0	0	6	38	0	4	0	0	0	0	0	0	0	0	0	0	39	2	5	0
		77		12%		-	-	44		9%				0		#DIV/0!			-	39		5%		
peak hour	0	44	0				5	21	0				0	0	0				0	0	20			
		44						26						0						20				
4:15	0	16	0	3	0	0	5	19	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
4:30	0	11	0	0	0	0	1	13	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
4:45	0	11	0	0	0	0	3	15	0	0	1	0	0	0	0	0	0	0	0	0	2	0	1	0
5:00	0	9	0	2	1	0	8	11	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0
5:15	0	15	0	1	0	0	6	18	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
5:30	0	9	0	0	0	0	5	25	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
5:45	0	8	0	1	0	0	2	15	0	1	0	0	0	0	0	0	0	0	0	0	3	0	0	0
6:00	0	11	0	0	1	0	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 hr total	0	90	0	7	2	0	38	124	0	1	1	0	0	0	0	0	0	0	0	0	15	0	2	0
	-	90		8%		-		162		1%			-	0		#DIV/0!			-	15		0%		-
peak hour	0	44	0				22	69	0				0	0	0				0	0	10			
		44						91						0					-	10				
4 hour	0	167	0				44	162	0				0	0	0				0	0	54			
total	-	167	-					206	-					õ	-				-	54				
														-										

											ANSPU	RIAIIC		A CORP	•									
Location	13 Street &	43 Avenue											Date	Wednesday	7 Mardh 20	12			Observers	CB				
			FROM THE						FROM THE							E EAST on			I		FROM THE			1
time			13 SI	treet					13 S	treet					43 Av	venue					43 Av	/enue		
ending	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE
7:15	0	3	0	1	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30	0	1	0	0	0	0	1	3	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0
7:45	0	10	0	2	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	4	1	0	0
8:00	0	5	0	0	0	0	1	3	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
8:15	0	10	1	1	0	0	1	3	0	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0
8:30	0	6	0	0	0	0	1	3	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
8:45	0	14	0	1	0	0	0	8	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00	0	5	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
2 hr total	0	54	1	6	0	0	7	28	0	4	0	0	0	0	0	0	0	1	0	0	18	2	0	0
		55		11%				35		11%				0		#DIV/0!				18		11%		
peak hour	0	35	1				3	17	0				0	0	0				0	0	9			
		36						20						0						9				
4:15	0	12	0	3	0	0	7	12	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0
4:30	0	8	1	0	0	0	4	9	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0
4:45	0	10	0	0	0	0	3	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	8	0	3	0	0	3	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15	0	12	0	1	0	0	8	10	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0
5:30	0	6	0	0	0	0	3	19	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0
5:45	0	6	1	1	0	0	0	16	0	1	0	0	0	0	0	0	0	0	0	0	2	0	0	0
6:00	0	9	0	0	0	0	2	7	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
2 hr total	0	71	2	8	0	0	30	91	0	1	0	0	0	0	0	0	0	0	0	0	16	0	0	0
		73		11%				121		1%				0		#DIV/0!				16		0%		
peak hour	0	32	1				14	54	0				0	0	0				0	0	9			
		33						68						0						9				
4 hour	0	125	3				37	119	0				0	0	0				0	0	34			
total		128						156						0						34				

											ANSPU	RIAII	JN DA I	A CORP										
Location	13 Street &	44 Avenue											Date	Wednesday	7 Mardh 20)12			Observers	DM				
				NORTH on			I			SOUTH on			I			IE EAST on			I.		FROM TH			1
time			13 S	Street					13 5	Street					44 A	venue					44 A	/enue		
ending	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE	LT	ST	RT	CV	PED	BIKE
7:15	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0
7:30	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0
7:45	0	3	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	7	2	0	0
8:00	0	3	1	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
8:15	0	6	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0
8:30	0	6	1	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
8:45	0	8	0	0	0	0	2	7	0	4	0	0	0	0	0	0	0	0	0	0	5	1	0	0
9:00	0	4	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	1	0	2	0	0	0
2 hr total	0	32	2	2	0	0	5	23	0	4	0	0	0	0	0	0	0	0	2	0	26	5	1	0
		34		6%				28		14%				0		#DIV/0!				28		18%		
peak hour	0	24	1				2	14	0				0	0	0				1	0	14		-	
		25						16						0						15				
4:15	0	5	0	2	0	0	4	7	0	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0
4:30	0	7	1	0	0	0	4	5	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
4:45	0	7	0	0	0	0	4	5	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
5:00	0	6	0	1	0	0	3	4	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0
5:15	0	8	0	0	0	0	3	7	0	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0
5:30	0	4	0	0	0	0	9	8	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
5:45	0	3	1	0	0	0	8	7	0	1	0	0	0	0	0	0	0	0	0	0	4	1	0	0
6:00	0	6	1	0	0	0	4	3	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0
2 hr total	0	46	3	3	0	0	39	46	0	1	0	0	0	0	0	0	0	0	0	0	21	4	1	0
		49		6%				85		1%				0		#DIV/0!				21		19%		
peak hour	0	21	2				24	25	0				0	0	0				0	0	12			
		23						49						0						12				I
4 hour	0	78	5				44	69	0				0	0	0				2	0	47			
total		83						113						0						49				

Appendix C City Transportation Zones and Population/Employment April 25, 2014

Appendix C City Transportation Zones and Population/Employment


TZone	Total Population 2012	Total Population 2020	Total Population 2040
300	0	0	0
301	0	49	1800
302	0	627	627
303	934	1867	1850
304	785	1246	1059
400		0	0
401		0	0
402		0	0
403		0	0
404		0	886
405		0	886
406		0	0
407		0	0
408		384	576
409		1348	2983
410		0	0
411		0	0
412		2322	2322
413		1524	1410
414		0	0
415		0	0

		Total	Total		
TZone	District	Employement	Employement		
		2020	2040		
300	3 North West	0	0		
301	3 North West	0	47		
302	3 North West	17	17		
303	3 North West	83	95		
304	3 North West	190	184		
400	4 North East	0	0		
401	4 North East	0	0		
402	4 North East	10	188		
403	4 North East	145	333		
404	4 North East	0	84		
405	4 North East	0	24		
406	4 North East	0	847		
407	4 North East	0	847		
408	4 North East	10	41		
409	4 North East	36	81		
410	4 North East	993	1224		
411	4 North East	365	381		
412	4 North East	34	34		
413	4 North East	241	268		
414	4 North East	930	1288		
415	4 North East	426	641		

BLACKWOLF STAGE 2 TRANSPORTATION IMPACT ASSESSMENT

Appendix D Adjacent Development Information April 25, 2014

Appendix D Adjacent Development Information

6.2 <u>Site Trip Generation</u>

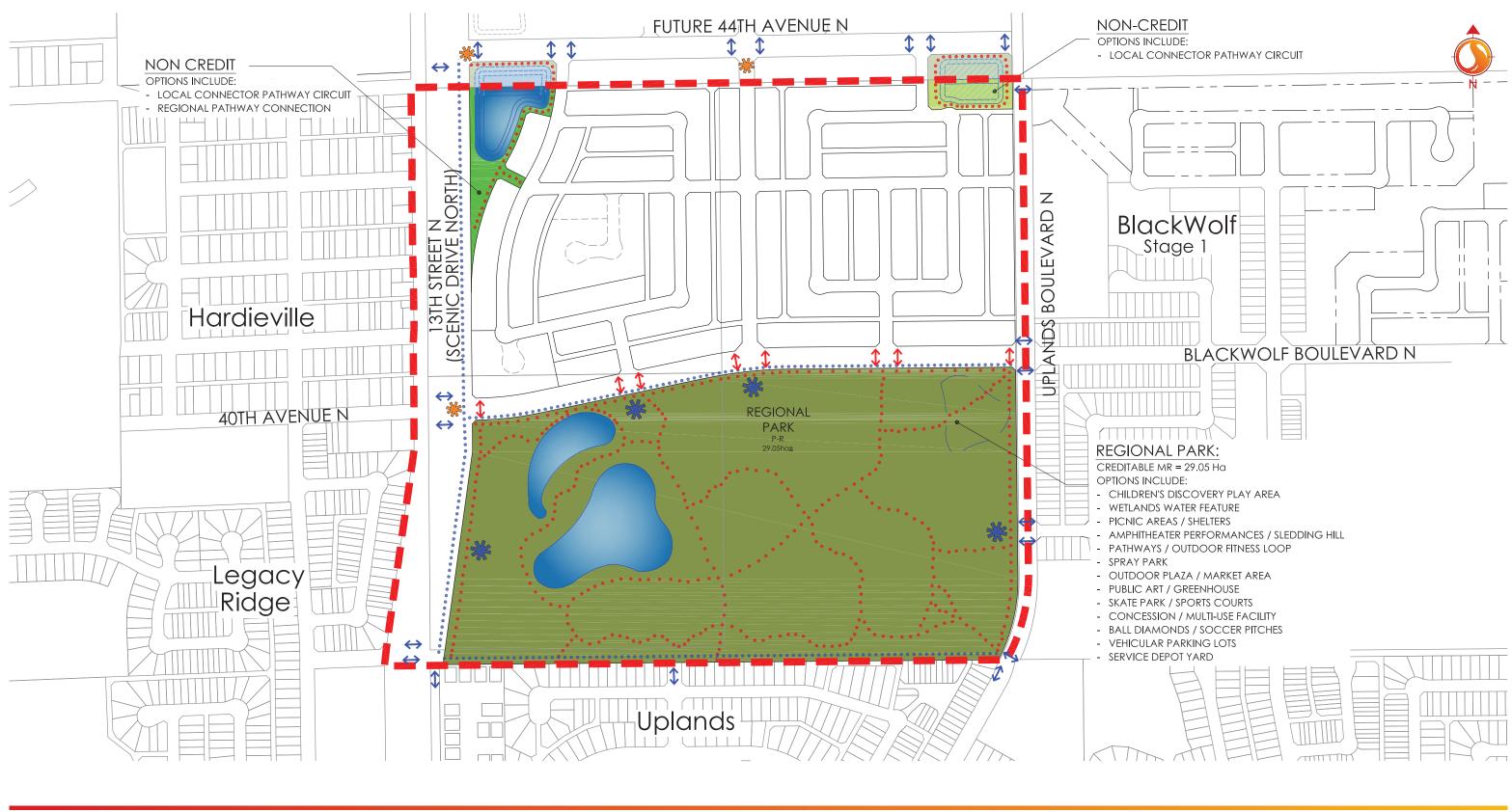
The Site trip generation for each zone was calculated based on the densities summarized in **Section 2.1.2** and is summarized in **Table 6-1**.

				a.	m.				p.m.						
Land Use	Density (units)	Data	Split	: (%)	Trips			Data	Split (%)		Trips				
USC	(units)	Rate	in	out	in	out	total	Rate	in	out	in	out	total		
Zone 1															
SF	141	0.77	26	74	28	81	109	1.02	64	36	92	52	144		
MF	253	0.75	29	71	55	135	190	0.92	61	39	142	91	233		
Т	otal		•		83	216	299				234	143	377		
Zone 2															
SF	301	0.77	26	74	60	172	232	1.02	64	36	196	111	307		
Т	otal		•		60	172	232				196	111	307		
		•				Zone 3		•							
SF	157	0.77	26	74	31	90	121	1.02	64	36	102	58	160		
MF	18	0.75	29	71	4	10	14	0.92	61	39	10	7	17		
School	400	0.42	55	45	92	76	168	0.07	20	80	6	22	28		
Т	otal				127	176	303				118	87	205		
Site	Total				270	564	834				548	341	889		

Table 6-1: Site Peak Hour Trip Generation

SF – Single Family

MF – Multi Family


The trip generation rates for the single family and multi family land uses are taken from the City TIS guidelines. The trip generation rates for the other land uses are taken from the *Institute of Transportation Engineers (ITE) Trip Generation* informational report and the higher or the formula or rate was used. If the formula was used the rate was back calculated from the total trips.

Daily trip generation was also calculated using the ITE information report and the corresponding rates and trips are summarized in **Table 6-2**.

BLACKWOLF STAGE 2 TRANSPORTATION IMPACT ASSESSMENT

Appendix E Outline Plan Information April 25, 2014

Appendix E Outline Plan Information

BLACKWOLF STAGE 2 | FIGURE 6.1 **Outline Plan Open Space Network** PREPARED FOR: CITY OF LETHBRIDGE - RELD

ONCEPT ONLY: THIS DRAWING IS AN ARTISTIC REPRESENTATION OF DESIGNS PREPARED CONSULTING LTD. IT IS CONCEPTUAL IN NATURE AND SUBJECT TO CHANGE. COPYRIGH

Comprehensively Planned Medium Residential (R-CM) Low Density Residential (R-L) Medium Density Residential (R-37) Mixed Density Residential (R-M) Parks and Recreation (P-R) Open Space - Non Credit (OS n/c) Storm Water Management (to HWL)

67.28 ha± 0.00 ha± 67.28 ha±		
<u>Area</u> 17.66 ha± 29.05 ha± 1.68 ha± 48.39 ha±		
18.89 ha±		
<u>Area</u> 13.8 ha±	<u>UPH</u> 25	<u>Total Units</u> 345
0.88 ha±	37	33
0.90 ha±	37	33
<u>3.31 ha±</u>	50	166
18.89 ha± 67.28 ha±		577
	0.00 ha± 67.28 ha± 17.66 ha± 29.05 ha± 1.68 ha± 48.39 ha± 18.89 ha± 13.8 ha± 0.88 ha± 0.88 ha± 0.90 ha± 3.31 ha± 18.89 ha±	0.00 ha± 67.28 ha± <u>Area</u> 17.66 ha± 29.05 ha± 1.68 ha± 48.39 ha± 18.89 ha± <u>Area</u> <u>UPH</u> 13.8 ha± 25 0.88 ha± 37 0.90 ha± 37 <u>3.31 ha±</u> 50 18.89 ha±

People/NDA = 76/ha Dwelling Units/NDA = 30/ha

BLACKWOLF STAGE 2 TRANSPORTATION IMPACT ASSESSMENT

Appendix F Synchro and SIDRA Reports April 25, 2014

Appendix F Synchro and SIDRA Reports

	≯	-	\mathbf{i}	4	←	*	1	1	1	1	.↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	88	32	3	55	47	35	4	186	26	17	123	58
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	100	36	3	62	53	40	5	211	30	19	140	66
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	140	156	245	225								
Volume Left (vph)	100	63	5	19								
Volume Right (vph)	3	40	30	66								
Hadj (s)	0.16	-0.04	-0.03	-0.12								
Departure Headway (s)	5.5	5.3	5.0	5.0								
Degree Utilization, x	0.21	0.23	0.34	0.31								
Capacity (veh/h)	589	614	664	675								
Control Delay (s)	10.0	9.9	10.6	10.2								
Approach Delay (s)	10.0	9.9	10.6	10.2								
Approach LOS	В	А	В	В								
Intersection Summary												
Delay			10.2									
HCM Level of Service			В									
Intersection Capacity Utilization	n		40.9%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

Lane Configurations Image: Configuration of the image: Configuration of th	
Volume (vph) 22 5 240 98 5 11 79 438 106 16 473 Ideal Flow (vphpl) 1750	SBR
Volume (vph) 22 5 240 98 5 11 79 438 106 16 473 Ideal Flow (vphpl) 1750	
Lane Width (m) 3.7	7
Grade (%) 0% 0% 0% Storage Length (m) 0.0 0.0 60.0 0.0 60.0 0.0 0.0 Storage Lanes 0 0 0 0 1 1 0 Taper Length (m) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Lane Util. Factor 1.00 <	1750
Storage Length (m) 0.0 0.0 60.0 0.0 60.0 0.0 0.0 Storage Lanes 0 0 0 0 1 0 Taper Length (m) 2.5 2.5 2.5 2.5 2.5 2.5 Lane Util. Factor 1.00	3.7
Storage Lanes 0 0 0 0 1 1 0 Taper Length (m) 2.5	
Taper Length (m)2.52.52.52.52.52.5Lane Util. Factor1.00	0.0
Lane Util. Factor1.001.	0
Ped Bike Factor 0.97 0.99 1.00 0.97 1.00	2.5
	1.00
Frt 0.879 0.987 0.850 0.998	
Flt Protected 0.996 0.959 0.950 0.998	
Satd. Flow (prot) 0 1481 0 0 1633 0 1601 1685 1432 0 1678	0
Flt Permitted 0.965 0.418 0.350 0.980	
Satd. Flow (perm) 0 1434 0 0 709 0 588 1685 1391 0 1647	0
Right Turn on Red Yes Yes Yes Yes	Yes
Satd. Flow (RTOR) 273 8 120 1	
Link Speed (k/h) 50 50 50 50	
Link Distance (m) 115.6 261.4 530.0 459.6	
Travel Time (s) 8.3 18.8 38.2 33.1	
Confl. Peds. (#/hr) 5 5 5 5 5 5 5	5
Confl. Bikes (#/hr)	
Peak Hour Factor 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	0.88
Growth Factor 100% 100% 100% 100% 100% 100% 100% 100	00%
Heavy Vehicles (%) 2% 2% 2% 2% 2% 5% 5% 5% 5% 5% 5%	5%
Bus Blockages (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0	0
Parking (#/hr)	
Mid-Block Traffic (%) 0% 0% 0%	
Adj. Flow (vph) 25 6 273 111 6 12 90 498 120 18 538	8
Shared Lane Traffic (%)	
Lane Group Flow (vph) 0 304 0 0 129 0 90 498 120 0 564	0
Turn Type Perm Perm Perm pm+pt Perm Perm	
Protected Phases 4 8 5 2 6	
Permitted Phases 4 8 2 2 6	
Detector Phase 4 4 8 8 5 2 2 6 6	
Switch Phase	
Minimum Initial (s) 10.0 10.0 10.0 10.0 5.0 20.0 20.0 20.0 20.0	
Minimum Split (s) 25.5 25.5 25.5 25.5 12.0 25.0 25.0 25.0 25.0	
	0.0
	0.0%
Maximum Green (s) 20.0 20.0 20.0 20.0 9.0 34.5 34.5 22.5 22.5	
Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.0 3.5 3.5 3.5	
All-Red Time (s) 2.0 2.0 2.0 2.0 0.0 1.5 1.5 1.5 1.5	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0
Total Lost Time (s) 5.5 5.5 4.0 5.5 5.5 4.0 3.0 5.0 5.0 5.0 5.0	4.0
Lead/Lag Lag Lag	
Lead-Lag Optimize?	
Vehicle Extension (s) 3.0	
Minimum Gap (s) 3.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\bg_AM.syn

	٦	-	\mathbf{r}	4	+	*	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	C-Min	C-Min	C-Min	C-Min	
Walk Time (s)	8.0	8.0		8.0	8.0			8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0			10.0	10.0	10.0	10.0	
Pedestrian Calls (#/hr)	5	5		5	5			5	5	5	5	
Act Effct Green (s)		14.6			14.6		41.9	39.9	39.9		31.7	
Actuated g/C Ratio		0.22			0.22		0.64	0.61	0.61		0.49	
v/c Ratio		0.57			0.78		0.19	0.48	0.13		0.70	
Control Delay		8.4			51.7		6.5	9.9	2.1		21.7	
Queue Delay		0.0			0.0		0.0	0.0	0.0		0.0	
Total Delay		8.4			51.7		6.5	9.9	2.1		21.7	
LOS		А			D		А	А	А		С	
Approach Delay		8.4			51.7			8.2			21.7	
Approach LOS		А			D			А			С	
Queue Length 50th (m)		3.0			13.8		3.4	28.2	0.0		42.8	
Queue Length 95th (m)		17.2			#31.4		9.7	58.8	5.8		#116.8	
Internal Link Dist (m)		91.6			237.4			506.0			435.6	
Turn Bay Length (m)							60.0					
Base Capacity (vph)		630			224		519	1033	900		803	
Starvation Cap Reductn		0			0		0	0	0		0	
Spillback Cap Reductn		0			0		0	0	0		0	
Storage Cap Reductn		0			0		0	0	0		0	
Reduced v/c Ratio		0.48			0.58		0.17	0.48	0.13		0.70	
Intersection Summary												
Area Type:	Other											
Cycle Length: 65												
Actuated Cycle Length: 65												
Offset: 0 (0%), Referenced	to phase 2:	NBTL and	l 6:SBTL,	Start of (Green, Ma	ister Inter	section					
Natural Cycle: 70												
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 1					Itersection							
Intersection Capacity Utilization 89.2% ICU Level of Service E												
Analysis Period (min) 15												
# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												
Splits and Phases: 10: 40) Ave N & S	cenic Driv	/e N									

	٦	-	\mathbf{F}	4	+	*	•	t	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		ሻ	eî 🗧		۲	eî 👘			\$	
Volume (vph)	12	10	143	175	3	35	50	92	328	49	176	6
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	60.0		0.0	60.0		0.0	0.0		0.0
Storage Lanes	0		0	1		0	1		0	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98		0.99	0.97		0.99	0.98			1.00	
Frt		0.883			0.860			0.883			0.996	
Flt Protected		0.996		0.950			0.950				0.989	
Satd. Flow (prot)	0	1489	0	1601	1412	0	1601	1455	0	0	1659	0
Flt Permitted		0.977		0.445			0.603				0.844	
Satd. Flow (perm)	0	1459	0	746	1412	0	1011	1455	0	0	1415	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		162			40			304			2	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		159.6			175.9			459.6			82.0	
Travel Time (s)		11.5			12.7			33.1			5.9	
Confl. Peds. (#/hr)	5	-	5	5		5	5		5	5		5
Confl. Bikes (#/hr)												-
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	5%	5%	5%	5%	5%	5%	5%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)		-		-		-	-			-		-
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	14	11	162	199	3	40	57	105	373	56	200	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	187	0	199	43	0	57	478	0	0	263	0
Turn Type	Perm			pm+pt			Perm			Perm		-
Protected Phases		4		3	8			2		-	6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	10.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	25.0	25.0		12.0	25.0		25.0	25.0		25.0	25.0	
Total Split (s)	25.0	25.0	0.0	12.0	37.0	0.0	28.0	28.0	0.0	28.0	28.0	0.0
Total Split (%)	38.5%	38.5%	0.0%	18.5%	56.9%	0.0%	43.1%	43.1%	0.0%	43.1%	43.1%	0.0%
Maximum Green (s)	20.0	20.0	0.070	9.0	32.0	0.070	23.0	23.0	0.070	23.0	23.0	0.070
Yellow Time (s)	3.5	3.5		3.0	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		0.0	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	3.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag	т. v	Lead	0.0	ч. v	0.0	0.0	ч. v	0.0	0.0	т.•
Lead-Lag Optimize?	Lug	Lug		Loud								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
	5.0	0.0		5.0	0.0		5.0	0.0		5.0	0.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\bg_AM.syn

	٦	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Walk Time (s)	8.0	8.0			8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0			12.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5			5		5	5		5	5	
Act Effct Green (s)		12.0		26.5	24.5		30.5	30.5			30.5	
Actuated g/C Ratio		0.18		0.41	0.38		0.47	0.47			0.47	
v/c Ratio		0.47		0.46	0.08		0.12	0.57			0.40	
Control Delay		9.5		15.9	4.5		14.3	9.2			14.9	
Queue Delay		0.0		0.0	0.0		0.0	0.0			0.0	
Total Delay		9.5		15.9	4.5		14.3	9.2			14.9	
LOS		А		В	А		В	А			В	
Approach Delay		9.5			13.8			9.7			14.9	
Approach LOS		А			В			А			В	
Queue Length 50th (m)		2.6		15.9	0.3		3.0	7.6			19.0	
Queue Length 95th (m)		13.8		21.7	4.1		m9.3	34.5			43.2	
Internal Link Dist (m)		135.6			151.9			435.6			58.0	
Turn Bay Length (m)				60.0			60.0					
Base Capacity (vph)		561		435	715		474	844			665	
Starvation Cap Reductn		0		0	0		0	0			0	
Spillback Cap Reductn		0		0	0		0	0			0	
Storage Cap Reductn		0		0	0		0	0			0	
Reduced v/c Ratio		0.33		0.46	0.06		0.12	0.57			0.40	
Intersection Summary												
Area Type:	Other											
Cycle Length: 65												
Actuated Cycle Length: 65												
Offset: 10 (15%), Reference	ced to phase	2:NBTL a	ind 6:SB1	L, Start o	of Green							
Natural Cycle: 65												
Control Type: Actuated-Co	oordinated											
Maximum v/c Ratio: 0.57												
Intersection Signal Delay:					tersectior		_					
Intersection Capacity Utiliz	zation 84.6%			IC	CU Level o	of Service	E					
Analysis Period (min) 15												
m Volume for 95th perce	entile queue i	s metered	by upstr	eam sign	al.							

Splits and Phases: 30: 44 Ave N & Scenic Drive N

	√ ø3	A 04
28 s	12 s	25 s
↓ ~ _{ø6}	* ø8	
28 s	37 s	

	٦	-	\mathbf{F}	4	+	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			÷			÷	
Volume (vph)	7	375	20	94	177	31	12	114	182	21	83	21
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	60.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.98			0.99	
Frt		0.993			0.986			0.920			0.977	
Flt Protected		0.999			0.985			0.998			0.992	
Satd. Flow (prot)	0	1669	0	0	1632	0	0	1566	0	0	1673	0
Flt Permitted		0.993			0.786			0.985			0.920	
Satd. Flow (perm)	0	1659	0	0	1301	0	0	1546	0	0	1551	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			12			140			20	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		154.8			151.2			164.3			51.5	
Travel Time (s)		11.1			10.9			11.8			3.7	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	5%	5%	5%	5%	5%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	8	426	23	107	201	35	14	130	207	24	94	24
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	457	0	0	343	0	0	351	0	0	142	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	20.0	20.0		20.0	20.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	25.0	25.0		25.0	25.0		23.0	23.0		23.0	23.0	
Total Split (s)	32.0	32.0	0.0	32.0	32.0	0.0	28.0	28.0	0.0	28.0	28.0	0.0
Total Split (%)	53.3%	53.3%	0.0%	53.3%	53.3%	0.0%	46.7%	46.7%	0.0%	46.7%	46.7%	0.0%
Maximum Green (s)	27.0	27.0		27.0	27.0		23.0	23.0		23.0	23.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	0.0			0.0			0.0					
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
	0.0	0.0		0.0	0.0		5.0	0.0		0.0	0.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\bg_AM.syn

	۶	-	\mathbf{F}	∢	-	•	1	Ť	۲	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	Min	Min		Min	Min		None	None		None	None	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5		5	5	
Act Effct Green (s)		21.5			21.5			12.9			12.9	
Actuated g/C Ratio		0.48			0.48			0.29			0.29	
v/c Ratio		0.57			0.54			0.64			0.31	
Control Delay		12.4			12.6			14.3			12.9	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		12.4			12.6			14.3			12.9	
LOS		В			В			В			В	
Approach Delay		12.4			12.6			14.3			12.9	
Approach LOS		В			В			В			В	
Queue Length 50th (m)		19.7			14.1			12.4			6.7	
Queue Length 95th (m)		54.7			43.0			35.3			18.7	
Internal Link Dist (m)		130.8			127.2			140.3			27.5	
Turn Bay Length (m)												
Base Capacity (vph)		1027			808			879			825	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.44			0.42			0.40			0.17	
Intersection Summary												
	Other											
Cycle Length: 60												
Actuated Cycle Length: 44.6	6											
Natural Cycle: 50												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 0.64												
Intersection Signal Delay: 13					tersectior							
Intersection Capacity Utiliza	tion 74.4%			IC	CU Level o	of Service	D					
Analysis Period (min) 15												

Splits and Phases: 34: 44 Ave N & Uplands Boulevard N

↑	→ ₀₄	
28 s	32 s	
↓ ~ ø6	€ ø8	
28 s	32 s	

	۶	-	\mathbf{r}	1	-	*	•	Ť	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	65	52	2	33	28	21	14	139	53	34	194	91
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	74	59	2	38	32	24	16	158	60	39	220	103
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	135	93	234	363								
Volume Left (vph)	74	38	16	39								
Volume Right (vph)	2	24	60	103								
Hadj (s)	0.13	-0.04	-0.11	-0.12								
Departure Headway (s)	5.7	5.6	4.9	4.8								
Degree Utilization, x	0.21	0.14	0.32	0.48								
Capacity (veh/h)	567	564	685	721								
Control Delay (s)	10.2	9.5	10.3	12.1								
Approach Delay (s)	10.2	9.5	10.3	12.1								
Approach LOS	В	А	В	В								
Intersection Summary												
Delay			11.0									
HCM Level of Service			В									
Intersection Capacity Utilization	ı		46.0%	IC	CU Level c	of Service			А			
Analysis Period (min)			15									

Lane Group EBL EBT EBR WBL WBT NBT NBT NBT SBL SBT SBB Lane Configurations		٦	-	\mathbf{F}	4	+	*	1	Ť	1	1	Ļ	~
Volume (vph) 15 5 147 115 5 19 237 552 114 15 52 114 15 532 114 15 532 1150 1750	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph) 15 5 147 115 5 19 237 552 104 15 532 21 Ideal Flow (vph) 1750 17	Lane Configurations		\$			\$		<u>۲</u>	•	1		\$	
Lane Width (m) 3.7	Volume (vph)	15		147	115		19	237		104	15		21
Lane Width (m) 3.7	Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (m) 0.0 0.0 60.0 0.0 60.0 0.0 60.0 0.0 0.0 Storage Lanes 0 <		3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
	Grade (%)		0%			0%			0%			0%	
Taper Length (m) 2.5 <th2.5< th=""></th2.5<>	Storage Length (m)	0.0		0.0	60.0		0.0	60.0		0.0	0.0		0.0
Lane Util. Factor 1.00 <td>Storage Lanes</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>1</td> <td></td> <td>1</td> <td>0</td> <td></td> <td>0</td>	Storage Lanes	0		0	0		0	1		1	0		0
Ped Bike Factor 0.97 0.99 0.97 1.00 Frt 0.881 0.981 0.800 0.995 Fil Protected 0.996 0.960 0.950 0.999 Satd. Flow (prot) 0 1479 0 0 1626 0 1601 1865 1384 0 1639 0 Satd. Flow (perm) 0 1430 0 0 858 0 553 1685 1384 0 1639 0 Right Turn on Red Yes	Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Frt 0.881 0.981 0.850 0.995 FIt Protected 0.996 0.960 0.950 0.999 Satd. Flow (prot) 0 1479 0 0 1626 0 1610 1685 1322 0 1673 0 FIt Permitted 0.964 0.510 0.328 1685 1384 0 1639 0 Std. Flow (prot) 0 1430 0 0 858 0 553 1685 1384 0 1639 0 Std. Flow (RTOR) 167 8 118 331 1 5	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected 0.996 0.960 0.950 0.999 Satd. Flow (prot) 0 1479 0 0 1626 0 1601 1685 1432 0 1673 0 Right Turn on Red Ves Yes Satd. Flow (ROR) 1677 8 118 3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1	Ped Bike Factor		0.97			0.99				0.97		1.00	
Satd. Flow (prot) 0 1479 0 0 1626 0 1601 1685 1432 0 1673 0 FIt Permitted 0.964 0.510 0.328 0 1673 0 9079 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Stad. Flow (RTOR) 167 8 118 3 118 3 Link Speed (kh) 50 50 50 50 50 50 50 55	Frt		0.881			0.981				0.850		0.995	
Fit Permitted 0.964 0.510 0.328 0.979 Satd. Flow (perm) 0 1430 0 0 888 0 553 1685 1384 0 139 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 167 8 118 3 1 3 Link Distance (m) 115.6 261.4 530.0 459.6 33.1 Confl. Bikes (#hn) 5<	Flt Protected		0.996			0.960		0.950				0.999	
Satd. Flow (perm) 0 1430 0 0 858 0 553 1685 1384 0 1639 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 167 Satd. Flow (RTOR) 118 3 118 3 Link Speed (kh) 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 55 5	Satd. Flow (prot)	0	1479	0	0	1626	0	1601	1685	1432	0	1673	0
Right Tum on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 167 8 118 3 Link Speed (k/h) 50 50 50 50 50 Link Distance (m) 115.6 261.4 530.0 459.6 Travel Time (s) 8.3 18.8 38.2 33.1 Confl. Breds. (#/hr) 5	Flt Permitted		0.964			0.510		0.328				0.979	
Sate.Flow (RTOR)16781183Link Speed (k/h)5050505050Link Distance (m)115.6261.4530.0459.6Travel Time (s)8.318.838.233.1Confl. Peds. (#hr)555555Peak Hour Factor0.88<	Satd. Flow (perm)	0	1430	0	0	858	0	553	1685	1384	0	1639	0
Link Speed (kth) 50 50 50 50 Link Distance (m) 115.6 261.4 530.0 459.6 Travel Time (s) 8.3 18.8 38.2 33.1 Confl. Peds. (#hr) 5	Right Turn on Red			Yes			Yes			Yes			Yes
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Satd. Flow (RTOR)		167							118		3	
Travel Time (s) 8.3 18.8 38.2 33.1 Confl. Peds. (#/hr) 5 <td>Link Speed (k/h)</td> <td></td> <td>50</td> <td></td> <td></td> <td>50</td> <td></td> <td></td> <td>50</td> <td></td> <td></td> <td>50</td> <td></td>	Link Speed (k/h)		50			50			50			50	
Confl. Peds. (#/hr) 5	Link Distance (m)		115.6			261.4			530.0			459.6	
Confl. Bikes (#/hr) Peak Hour Factor 0.88 0.84 0.83 0.84 0.88 0.83 0.84 0.88 0.83 0.89 0.84	Travel Time (s)		8.3			18.8			38.2			33.1	
Peak Hour Factor 0.88 0.89 0.88	Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Growth Factor 100% 00% 0	Confl. Bikes (#/hr)												
Heavy Vehicles (%) 2% 2% 2% 2% 2% 5% <td>Peak Hour Factor</td> <td>0.88</td>	Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Bus Blockages (#/hr) 0 131 6 22 269 627 118 0 646 0 Lane Group Flow (vph) 0 190 0 0 159 0 269 627 118 0 646 0 Protected Phases 4 8 5 2 2 6 2 2 6 2 2 6 2 2 6 2 2 6 2 2 6 2 2 6 2 2 2 2 2	Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Parking (#hr) Mid-Block Traffic (%) 0% 0% 0% 0% Adj. Flow (vph) 17 6 167 131 6 22 269 627 118 17 605 24 Shared Lane Traffic (%) 0 0 0 159 0 269 627 118 17 605 24 Lane Group Flow (vph) 0 190 0 0 159 0 269 627 118 0 646 0 Turn Type Perm Perm Perm perm Perm Perm Perm Perm 6 Protected Phases 4 8 5 2 2 6 6 Switch Phase 4 4 8 8 5 2 2 6 6 Switch Phase 10.0 10.0 10.0 12.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	5%	5%	5%	5%	5%	5%
Mid-Block Traffic (%) 0% 0% 0% 0% 0% Adj. Flow (vph) 17 6 167 131 6 22 269 627 118 17 605 24 Shared Lane Traffic (%) 0 190 0 0 159 0 269 627 118 0 646 0 Turn Type Perm Perm pm+pt Perm Perm Perm 6 Permited Phases 4 8 5 2 6 6 Detector Phase 4 4 8 5 2 2 6 6 Switch Phase 4 4 8 8 5 2 2 6 6 Minimum Initial (s) 10.0 10.0 10.0 12.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0<	Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Adj. Flow (vph) 17 6 167 131 6 22 269 627 118 17 605 24 Shared Lane Traffic (%) 0 190 0 0 159 0 269 627 118 0 646 0 Tum Type Perm Perm <td>Parking (#/hr)</td> <td></td>	Parking (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph) 0 190 0 0 159 0 269 627 118 0 646 0 Turn Type Perm Perm Perm pm+pt Perm Perm Perm Protected Phases 4 8 5 2 6 Permitted Phases 4 8 8 5 2 2 6 Detector Phase 4 4 8 8 5 2 2 6 Detector Phase 4 4 8 8 5 2 2 6 6 Switch Phase	Mid-Block Traffic (%)		0%			0%			0%			0%	
Lane Group Flow (vph) 0 190 0 159 0 269 627 118 0 646 0 Turn Type Perm Perm Perm pm+pt Perm Perm Perm Protected Phases 4 8 5 2 6 6 Permitted Phases 4 8 8 5 2 2 6 Detector Phase 4 4 8 8 5 2 2 6 6 Switch Phase 10.0 10.0 10.0 12.0 20.0	Adj. Flow (vph)	17	6	167	131	6	22	269	627	118	17	605	24
Turn TypePermPermPermPermPermProtected Phases48526Permitted Phases448226Detector Phase44885226Switch Phase522666Minimun Initial (s)10.010.010.012.020.020.020.020.0Minimun Split (s)25.525.525.525.515.025.025.025.025.0Total Split (s)35.0%35.0%0.0%35.0%35.0%0.0%15.0%65.0%65.0%50.0%0.0%Maximum Green (s)29.529.529.529.512.060.060.045.045.0Yellow Time (s)3.53.53.53.53.03.03.03.03.03.03.03.0Lead-Lagtime (s)5.55.54.05.55.54.03.05.05.05.04.0Lead-Lag Optimize?tead-Lag Optimize?4.03.03.03.03.03.03.03.03.03.03.03.03.0													
Protected Phases 4 8 5 2 6 Permitted Phases 4 4 8 2 2 6 Detector Phase 4 4 8 8 5 2 2 6 Switch Phase	Lane Group Flow (vph)	0	190	0		159	0	269	627	118		646	0
Permitted Phases48226Detector Phase448852266Switch PhaseMinimum Initial (s)10.010.010.012.020.020.020.020.0Minimum Split (s)25.525.525.525.515.025.025.025.025.0Total Split (s)35.035.00.035.035.00.015.065.065.050.050.00.0%Total Split (%)35.0%35.0%0.0%35.0%0.0%15.0%65.0%65.0%50.0%50.0%0.0%Maximum Green (s)29.529.529.512.060.060.045.045.0Yellow Time (s)3.53.53.53.53.03.5 <td></td> <td>Perm</td> <td></td> <td></td> <td>Perm</td> <td></td> <td></td> <td>pm+pt</td> <td></td> <td>Perm</td> <td>Perm</td> <td></td> <td></td>		Perm			Perm			pm+pt		Perm	Perm		
Detector Phase 4 4 8 8 5 2 2 6 6 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 12.0 20.0 20.0 20.0 20.0 Minimum Split (s) 25.5 25.5 25.5 25.5 25.5 25.0 20.0 0.0 20.0 20.0 20.0 20.0 20.0 <td< td=""><td>Protected Phases</td><td></td><td>4</td><td></td><td></td><td>8</td><td></td><td>5</td><td>2</td><td></td><td></td><td>6</td><td></td></td<>	Protected Phases		4			8		5	2			6	
Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 12.0 20.0 20.0 20.0 Minimum Split (s) 25.5 25.5 25.5 25.5 15.0 25.0 25.0 25.0 Total Split (s) 35.0 35.0 0.0 35.0 35.0 0.0 15.0 65.0 65.0 50.0 50.0 0.0 Total Split (s) 35.0% 35.0% 0.0% 35.0% 0.0% 15.0% 65.0% 65.0% 50.0% 0.0% 0.0% Maximum Green (s) 29.5 29.5 29.5 29.5 12.0 60.0 60.0 45.0 45.0 Yellow Time (s) 3.5 3.5 3.5 3.0 3.5	Permitted Phases	4			8			2		2	6		
Minimum Initial (s)10.010.010.010.012.020.020.020.020.0Minimum Split (s)25.525.525.525.515.025.025.025.025.025.0Total Split (s)35.035.00.035.035.00.015.065.065.050.050.00.0Total Split (%)35.0%35.0%0.0%35.0%0.0%15.0%65.0%65.0%50.0%50.0%0.0%Maximum Green (s)29.529.529.529.512.060.060.045.045.0Yellow Time (s)3.53.53.53.53.03.53	Detector Phase	4	4		8	8		5	2	2	6	6	
Minimum Split (s)25.525.525.525.525.515.025.025.025.025.025.0Total Split (s)35.035.00.035.035.00.015.065.065.050.050.00.0Total Split (%)35.0%35.0%0.0%35.0%35.0%0.0%15.0%65.0%65.0%50.0%50.0%0.0%Maximum Green (s)29.529.529.529.512.060.060.045.045.0Yellow Time (s)3.53.53.53.53.03.53.53.53.53.5All-Red Time (s)2.02.02.02.00.01.51.51.51.5Lost Time Adjust (s)0.00.00.00.00.00.00.00.00.0Total Lost Time (s)5.55.54.05.55.54.03.05.05.05.04.0Lead/Lag </td <td></td>													
Total Split (s)35.035.00.035.035.00.015.065.065.050.050.00.0Total Split (%)35.0%35.0%0.0%35.0%35.0%35.0%0.0%15.0%65.0%65.0%65.0%50.0%50.0%0.0%Maximum Green (s)29.529.529.529.512.060.060.045.045.0Yellow Time (s)3.53.53.53.53.03.53.													
Total Split (%)35.0%35.0%0.0%35.0%35.0%0.0%15.0%65.0%65.0%50.0%50.0%0.0%Maximum Green (s)29.529.529.529.512.060.060.045.045.0Yellow Time (s)3.53.53.53.53.03.53.53.53.5All-Red Time (s)2.02.02.02.00.01.51.51.51.5Lost Time Adjust (s)0.00.00.00.00.00.00.00.00.0Total Lost Time (s)5.55.54.05.55.54.03.05.05.05.04.0Lead/LagLeadLeadLagLagLagLagLagLagLagVehicle Extension (s)3.03.03.03.03.03.03.03.03.03.03.03.0	Minimum Split (s)	25.5	25.5			25.5		15.0	25.0	25.0	25.0	25.0	
Maximum Green (s) 29.5 29.5 29.5 29.5 12.0 60.0 60.0 45.0 45.0 Yellow Time (s) 3.5 3.5 3.5 3.5 3.0 3.5 4.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.5 1.5 1.6 1.0 1.0 1.0	Total Split (s)	35.0	35.0		35.0	35.0	0.0	15.0	65.0	65.0	50.0	50.0	0.0
Yellow Time (s) 3.5 3.5 3.5 3.5 3.0 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.0 0.0 1.5 1.5 1.5 1.5 Lost Time Adjust (s) 0.0 <		35.0%	35.0%	0.0%	35.0%	35.0%	0.0%	15.0%	65.0%	65.0%	50.0%	50.0%	0.0%
All-Red Time (s) 2.0 2.0 2.0 2.0 0.0 1.5 1.5 1.5 1.5 Lost Time Adjust (s) 0.0	Maximum Green (s)	29.5	29.5		29.5	29.5		12.0	60.0	60.0	45.0	45.0	
Lost Time Adjust (s) 0.0	Yellow Time (s)	3.5	3.5		3.5	3.5		3.0	3.5	3.5	3.5	3.5	
Total Lost Time (s) 5.5 5.5 4.0 5.5 5.5 4.0 3.0 5.0 5.0 5.0 4.0 Lead/Lag Lead Lead Lead Lag Lag Lag Lag Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	All-Red Time (s)	2.0	2.0		2.0	2.0		0.0	1.5	1.5		1.5	
Lead/Lag Lead Lag Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lead-Lag Optimize? Vehicle Extension (s) 3.0 <	Total Lost Time (s)	5.5	5.5	4.0	5.5	5.5	4.0	3.0	5.0	5.0	5.0	5.0	4.0
Vehicle Extension (s) 3.0								Lead			Lag	Lag	
	Lead-Lag Optimize?												
Minimum Gap (s) 3.0	Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	
	Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\bg_PM.syn

	٦	→	$\mathbf{\hat{v}}$	4	+	*	•	t	۴	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	C-Min	C-Min	C-Min	C-Min	
Walk Time (s)	8.0	8.0		8.0	8.0			8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0			10.0	10.0	10.0	10.0	
Pedestrian Calls (#/hr)	5	5		5	5			5	5	5	5	
Act Effct Green (s)		20.4			20.4		71.1	69.1	69.1		53.7	
Actuated g/C Ratio		0.20			0.20		0.71	0.69	0.69		0.54	
v/c Ratio		0.45			0.87		0.52	0.54	0.12		0.73	
Control Delay		10.0			75.7		9.9	11.2	1.8		19.7	
Queue Delay		0.0			0.0		0.0	0.0	0.0		0.0	
Total Delay		10.0			75.7		9.9	11.2	1.8		19.7	
LOS		А			Е		А	В	А		В	
Approach Delay		10.0			75.7			9.8			19.7	
Approach LOS		А			Е			А			В	
Queue Length 50th (m)		3.6			28.6		15.8	53.2	0.0		43.4	
Queue Length 95th (m)		17.9			46.1		33.6	101.5	6.1		#164.4	
Internal Link Dist (m)		91.6			237.4			506.0			435.6	
Turn Bay Length (m)							60.0					
Base Capacity (vph)		540			259		522	1164	992		882	
Starvation Cap Reductn		0			0		0	0	0		0	
Spillback Cap Reductn		0			0		0	0	0		0	
Storage Cap Reductn		0			0		0	0	0		0	
Reduced v/c Ratio		0.35			0.61		0.52	0.54	0.12		0.73	
Intersection Summary												
<i></i>	Other											
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 0 (0%), Referenced	to phase 2:	NBTL and	6:SBTL,	Start of (Green, Ma	ister Inter	section					
Natural Cycle: 80												
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 0.87												
Intersection Signal Delay: 1				Ir	tersectior	LOS: B						
Intersection Capacity Utiliza	tion 103.8%	6		IC	CU Level o	of Service	G					
Analysis Period (min) 15												
# 95th percentile volume e			eue may	be longer								
Queue shown is maximu	im after two	cycles.										
Splits and Phases: 10: 40) Ave N & S	Cenic Driv	/e N									

$\begin{array}{c|c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet$

	٦	-	\mathbf{F}	4	+	*	1	t	۴	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		<u> </u>	eî.		۲	eî 👘			\$	
Volume (vph)	7	6	97	328	11	57	167	205	198	46	139	16
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	60.0		0.0	60.0		0.0	0.0		0.0
Storage Lanes	0		0	1		0	1		0	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97		0.99	0.97		0.99	0.98			1.00	
Frt		0.881			0.873			0.926			0.989	
Flt Protected		0.997		0.950			0.950				0.989	
Satd. Flow (prot)	0	1480	0	1601	1431	0	1601	1535	0	0	1644	0
Flt Permitted		0.979		0.414			0.610				0.837	
Satd. Flow (perm)	0	1453	0	692	1431	0	1019	1535	0	0	1390	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		110			65			61			5	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		159.6			175.9			459.6			82.0	
Travel Time (s)		11.5			12.7			33.1			5.9	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	5%	5%	5%	5%	5%	5%	5%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	8	7	110	373	12	65	190	233	225	52	158	18
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	125	0	373	77	0	190	458	0	0	228	0
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	10.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	25.0	25.0		12.0	25.0		25.0	25.0		25.0	25.0	
Total Split (s)	25.0	25.0	0.0	27.0	52.0	0.0	48.0	48.0	0.0	48.0	48.0	0.0
Total Split (%)	25.0%	25.0%	0.0%	27.0%	52.0%	0.0%	48.0%	48.0%	0.0%	48.0%	48.0%	0.0%
Maximum Green (s)	20.0	20.0		24.0	47.0	,	43.0	43.0		43.0	43.0	,
Yellow Time (s)	3.5	3.5		3.0	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		0.0	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	3.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead	0.0		0.0	0.0		0.0	0.0	
Lead-Lag Optimize?	Lag	Lag		_000								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\bg_PM.syn

	٦	-	$\mathbf{\hat{z}}$	4	-	×	1	1	1	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Walk Time (s)	8.0	8.0			8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0			12.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5			5		5	5		5	5	
Act Effct Green (s)		12.0		40.0	38.0		52.0	52.0			52.0	
Actuated g/C Ratio		0.12		0.40	0.38		0.52	0.52			0.52	
v/c Ratio		0.46		0.77	0.13		0.36	0.55			0.31	
Control Delay		15.5		34.0	6.1		11.0	11.5			16.4	
Queue Delay		0.0		0.0	0.0		0.0	0.0			0.0	
Total Delay		15.5		34.0	6.1		11.0	11.5			16.4	
LOS		В		С	А		В	В			В	
Approach Delay		15.5			29.3			11.3			16.4	
Approach LOS		В			С			В			В	
Queue Length 50th (m)		2.7		56.3	1.5		9.3	24.6			23.1	
Queue Length 95th (m)		16.3		68.3	8.3		0.0	101.5			46.2	
Internal Link Dist (m)		135.6			151.9			435.6			58.0	
Turn Bay Length (m)				60.0			60.0					
Base Capacity (vph)		379		500	707		530	828			726	
Starvation Cap Reductn		0		0	0		0	0			0	
Spillback Cap Reductn		0		0	0		0	0			0	
Storage Cap Reductn		0		0	0		0	0			0	
Reduced v/c Ratio		0.33		0.75	0.11		0.36	0.55			0.31	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 40 (40%), Reference	ed to phase	2:NBTL a	ind 6:SB1	L, Start o	of Green							
Natural Cycle: 65												
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 0.77												
Intersection Signal Delay: 1					itersection							
Intersection Capacity Utiliza	ation 80.7%			IC	CU Level o	of Service	e D					
Analysis Period (min) 15												

Splits and Phases: 30: 44 Ave N & Scenic Drive N

⊲↑ ø2	🖌 ø3	l → _{ø4}
48 s	27 s	25 s
↓ ► ø6	* ø8	
48 s	52 s	

	۶	+	*	4	Ļ	*	•	†	*	ŕ	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Volume (vph)	24	209	17	178	374	26	24	98	103	32	123	13
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	60.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.99			1.00	
Frt		0.991			0.994			0.938			0.989	
Flt Protected		0.995			0.985			0.995			0.991	
Satd. Flow (prot)	0	1658	0	0	1648	0	0	1597	0	0	1696	0
Flt Permitted	3	0.925	2	2	0.804	2		0.952	2	-	0.903	-
Satd. Flow (perm)	0	1541	0	0	1342	0	0	1527	0	0	1544	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		9			6			54			5	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		154.8			151.2			164.3			62.5	
Travel Time (s)		11.1			10.9			11.8			4.5	
Confl. Peds. (#/hr)	5		5	5	10.0	5	5	11.0	5	5	1.0	5
Confl. Bikes (#/hr)	Ū		Ū	Ű		Ű	U		Ū	Ŭ		Ŭ
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	5%	5%	5%	5%	5%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)	Ū	Ū	Ū	Ŭ	Ū	Ŭ	Ū	•	Ū	Ŭ	· ·	Ū
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	27	238	19	202	425	30	27	111	117	36	140	15
Shared Lane Traffic (%)											•	
Lane Group Flow (vph)	0	284	0	0	657	0	0	255	0	0	191	0
Turn Type	Perm	201	Ű	Perm	001	Ű	Perm	200	Ű	Perm	101	Ŭ
Protected Phases	i onn	4		1 Onn	8		1 0111	2		i onn	6	
Permitted Phases	4			8	· ·		2	-		6	,	
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase				Ū	•		_	_		, ,	•	
Minimum Initial (s)	20.0	20.0		20.0	20.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	25.0	25.0		25.0	25.0		23.0	23.0		23.0	23.0	
Total Split (s)	52.0	52.0	0.0	52.0	52.0	0.0	23.0	23.0	0.0	23.0	23.0	0.0
Total Split (%)	69.3%	69.3%	0.0%	69.3%	69.3%	0.0%	30.7%	30.7%	0.0%	30.7%	30.7%	0.0%
Maximum Green (s)	47.0	47.0	0.070	47.0	47.0	0.070	18.0	18.0	0.070	18.0	18.0	0.070
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	ч.U	5.0	5.0	т .0
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
	5.0	0.0		5.0	0.0		5.0	0.0		5.0	0.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\bg_PM.syn

	٦	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	Min	Min		Min	Min		None	None		None	None	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5		5	5	
Act Effct Green (s)		32.8			32.8			13.6			13.6	
Actuated g/C Ratio		0.57			0.57			0.24			0.24	
v/c Ratio		0.32			0.85			0.63			0.51	
Control Delay		7.1			22.4			25.3			26.8	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		7.1			22.4			25.3			26.8	
LOS		А			С			С			С	
Approach Delay		7.1			22.4			25.3			26.8	
Approach LOS		А			С			С			С	
Queue Length 50th (m)		11.9			45.1			17.7			16.2	
Queue Length 95th (m)		26.1			101.8			46.8			40.5	
Internal Link Dist (m)		130.8			127.2			140.3			38.5	
Turn Bay Length (m)												
Base Capacity (vph)		1275			1110			549			522	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.22			0.59			0.46			0.37	
Intersection Summary												
	Other											
Cycle Length: 75												
Actuated Cycle Length: 57.1												
Natural Cycle: 60												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.85												
Intersection Signal Delay: 20					tersection							
Intersection Capacity Utilizat	tion 79.4%			IC	U Level c	of Service	D					
Analysis Period (min) 15												

Splits and Phases: 34: 44 Ave N & Uplands Boulevard N

≜ ₀2	A 04	
23 s	52 s	
↓ > _{ø6}	▼ ø8	
23 s	52 s	

	≯	+	Ļ	•	*	
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्भ	ef 👘		¥	
Volume (veh/h)	18	158	176	7	19	48
Sign Control	-	Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	20	180	200	8	22	55
Pedestrians	20	5	5	Ū	5	
Lane Width (m)		3.7	3.7		3.7	
Walking Speed (m/s)		1.2	1.2		1.2	
Percent Blockage		0	0		0	
Right turn flare (veh)		U	U		U	
Median type		None	None			
Median storage veh)		NULLE	NULLE			
		261				
Upstream signal (m)		201				
pX, platoon unblocked vC, conflicting volume	213				434	214
	213				434	Z14
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	040				404	04.4
vCu, unblocked vol	213				434	214
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)	• •					
tF (s)	2.2				3.5	3.3
p0 queue free %	98				96	93
cM capacity (veh/h)	1351				565	819
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	200	208	76			
Volume Left	20	0	22			
Volume Right	0	8	55			
cSH	1351	1700	726			
Volume to Capacity	0.02	0.12	0.10			
Queue Length 95th (m)	0.4	0.0	2.7			
Control Delay (s)	0.9	0.0	10.5			
Lane LOS	А		В			
Approach Delay (s)	0.9	0.0	10.5			
Approach LOS			В			
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utilizat	ion		37.1%	IC	U Level o	of Service
Analysis Period (min)			15			
			10			

	٨	-	\mathbf{r}	4	+	*	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Volume (veh/h)	11	152	13	11	147	16	5	2	5	39	5	31
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	12	173	15	12	167	18	6	2	6	44	6	35
Pedestrians		5			5			5			5	
Lane Width (m)		3.7			3.7			3.7			3.7	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			0			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	190			192			454	425	190	423	424	186
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	190			192			454	425	190	423	424	186
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			99			99	100	99	91	99	96
cM capacity (veh/h)	1378			1375			476	507	844	520	508	849
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	200	198	14	85								
Volume Left	12	130	6	44								
Volume Right	12	12	6	35								
cSH	1378	1375	589	618								
Volume to Capacity	0.01	0.01	0.02	0.14								
Queue Length 95th (m)	0.01	0.01	0.02	3.6								
Control Delay (s)	0.2	0.2	11.3	11.8								
Lane LOS	0.0 A	0.0 A	B	B								
Approach Delay (s)	0.6	0.6	11.3	11.8								
Approach LOS	0.0	0.0	B	B								
Intersection Summary												
Average Delay			2.8									_
Intersection Capacity Utiliza	ition		27.7%	IC	U Level o	of Service			А			
Analysis Period (min)			15									
,												

	≯	+	Ļ	•	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	eî.		¥	
Volume (veh/h)	6	190	158	6	16	17
Sign Control	-	Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	7	216	180	7	18	19
Pedestrians		5	5		5	
Lane Width (m)		3.7	3.7		3.7	
Walking Speed (m/s)		1.2	1.2		1.2	
Percent Blockage		0	0		0	
Right turn flare (veh)		U	U		U	
Median type		None	None			
Median storage veh)		NULLE	NULLE			
Upstream signal (m)						
pX, platoon unblocked	191				422	193
vC, conflicting volume	191				422	192
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	404				400	100
vCu, unblocked vol	191				422	193
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)	• •					
tF (s)	2.2				3.5	3.3
p0 queue free %	100				97	98
cM capacity (veh/h)	1376				580	841
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	223	186	38			
Volume Left	7	0	18			
Volume Right	0	7	19			
cSH	1376	1700	691			
Volume to Capacity	0.00	0.11	0.05			
Queue Length 95th (m)	0.1	0.0	1.3			
Control Delay (s)	0.3	0.0	10.5			
Lane LOS	А		В			
Approach Delay (s)	0.3	0.0	10.5			
Approach LOS			В			
Intersection Summary						
Average Delay			1.0			
Intersection Capacity Utilizat	ion		27.6%	IC	U Level c	f Service
Analysis Period (min)	•		15	.0	0.0.0	
			10			

	≯	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	106	32	69	55	47	35	37	199	26	17	157	80
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	120	36	78	62	53	40	42	226	30	19	178	91
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	235	156	298	289								
Volume Left (vph)	120	63	42	19								
Volume Right (vph)	78	40	30	91								
Hadj (s)	-0.06	-0.04	0.00	-0.14								
Departure Headway (s)	5.8	6.0	5.6	5.5								
Degree Utilization, x	0.38	0.26	0.46	0.44								
Capacity (veh/h)	561	525	597	611								
Control Delay (s)	12.3	11.1	13.3	12.6								
Approach Delay (s)	12.3	11.1	13.3	12.6								
Approach LOS	В	В	В	В								
Intersection Summary												
Delay			12.5									
HCM Level of Service			В									
Intersection Capacity Utilizat	tion		50.8%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	≯	-	\mathbf{F}	∢	+	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	7	32	39	24	12	10	15	6	9	4	12	3
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	8	36	44	27	14	11	17	7	10	5	14	3
Pedestrians		5			5			5			5	
Lane Width (m)		3.7			3.7			3.7			3.7	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			0			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	30			86			169	164	69	172	180	29
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	30			86			169	164	69	172	180	29
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			98			98	99	99	99	98	100
cM capacity (veh/h)	1576			1504			756	706	986	752	691	1036
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	89	52	34	22								
Volume Left	8	27	17	5								
Volume Right	44	11	10	3								
cSH	1576	1504	800	743								
Volume to Capacity	0.01	0.02	0.04	0.03								
Queue Length 95th (m)	0.01	0.02	1.0	0.7								
Control Delay (s)	0.7	3.9	9.7	10.0								
Lane LOS	A	0.0 A	0.7 A	A								
Approach Delay (s)	0.7	3.9	9.7	10.0								
Approach LOS	0.1	0.0	A	A								
Intersection Summary												
Average Delay			4.1									
Intersection Capacity Utilizat	tion		22.2%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									
,,												

	٦	$\mathbf{\hat{z}}$	•	1	Ļ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	4	
Volume (veh/h)	33	37	13	326	217	12
Sign Control	Stop		-	Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	38	42	15	370	247	14
Pedestrians	5			5	5	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.2			1.2	1.2	
Percent Blockage	0			0	0	
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)					164	
pX, platoon unblocked						
vC, conflicting volume	663	263	265			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	663	263	265			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	91	95	99			
cM capacity (veh/h)	418	769	1293			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	80	385	260			
Volume Left	38	15	0			
Volume Right	42	0	14			
cSH	550	1293	1700			
Volume to Capacity	0.14	0.01	0.15			
Queue Length 95th (m)	3.8	0.3	0.0			
Control Delay (s)	12.6	0.4	0.0			
Lane LOS	В	A				
Approach Delay (s)	12.6	0.4	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utilizat	tion		42.8%	10	CU Level o	of Service
Analysis Period (min)			15			
			10			

	-	\mathbf{r}	4	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢Î			र्भ	Y	
Volume (veh/h)	397	11	5	236	29	13
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	451	12	6	268	33	15
Pedestrians	5			5	5	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.2			1.2	1.2	
Percent Blockage	0			0	0	
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)	176					
pX, platoon unblocked						
vC, conflicting volume			469		747	467
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			469		747	467
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			99		91	97
cM capacity (veh/h)			1088		375	590
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	464	274	48			
Volume Left	404	6	40 33			
Volume Right	12	0	33 15			
cSH	1700	1088	423			
Volume to Capacity	0.27	0.01	0.11			
Queue Length 95th (m)	0.27	0.01	2.9			
Control Delay (s)	0.0	0.1	14.6			
Lane LOS	0.0	0.2 A	14.0 B			
Approach Delay (s)	0.0	0.2	14.6			
Approach LOS	0.0	0.2	14.0 B			
			U			
Intersection Summary			1.0			
Average Delay			1.0			(0)
Intersection Capacity Utiliza	ation		35.0%	IC	U Level c	of Service
Analysis Period (min)			15			

	٦	-	\mathbf{F}	•	←	۰.	٩.	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	3	401	6	12	219	7	12	5	11	19	5	10
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	3	456	7	14	249	8	14	6	12	22	6	11
Pedestrians		5			5			5			5	
Lane Width (m)		3.7			3.7			3.7			3.7	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			0			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					377							
pX, platoon unblocked												
vC, conflicting volume	262			468			770	760	469	771	759	263
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	262			468			770	760	469	771	759	263
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			95	98	98	93	98	99
cM capacity (veh/h)	1297			1089			301	328	589	298	328	769
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	466	270	32	39								
Volume Left	3	14	14	22								
Volume Right	7	8	12	11								
cSH	1297	1089	379	370								
Volume to Capacity	0.00	0.01	0.08	0.10								
Queue Length 95th (m)	0.1	0.3	2.1	2.6								
Control Delay (s)	0.1	0.5	15.4	15.9								
Lane LOS	А	А	С	С								
Approach Delay (s)	0.1	0.5	15.4	15.9								
Approach LOS			С	С								
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utiliza	tion		35.9%	IC	CU Level o	f Service			А			
Analysis Period (min)			15									

	-	\mathbf{r}	∢	←	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢Î,			र्भ	Y	
Volume (veh/h)	426	4	6	227	11	16
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	484	5	7	258	12	18
Pedestrians	5			5	5	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.2			1.2	1.2	
Percent Blockage	0			0	0	
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				155		
pX, platoon unblocked						
vC, conflicting volume			494		768	496
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			494		768	496
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			99		97	97
cM capacity (veh/h)			1065		364	569
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	489	265	31			
Volume Left	409	203	12			
Volume Right	5	0	18			
cSH	1700	1065	463			
Volume to Capacity	0.29	0.01	0.07			
Queue Length 95th (m)	0.20	0.1	1.6			
Control Delay (s)	0.0	0.3	13.3			
Lane LOS	0.0	0.0 A	В			
Approach Delay (s)	0.0	0.3	13.3			
Approach LOS	0.0	0.0	В			
			2			
Intersection Summary			0.6			
Average Delay			0.6 36.1%		U Level c	f Convice
Intersection Capacity Utilization	11		.50 1%			Service
Analysis Period (min)	511		15	10	0 20101 0	

	۶	+	*	4	+	×	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 >		ሻ	4		5	†	1		4	
Volume (vph)	22	5	240	205	5	18	79	447	156	20	498	7
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%		•••	0%	•	•	0%	•	•••	0%	•
Storage Length (m)	0.0		0.0	60.0		0.0	60.0		0.0	0.0		0.0
Storage Lanes	0		0	1		0	1		1	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98		1.00	0.98				0.97		1.00	
Frt		0.879			0.885				0.850		0.998	
FIt Protected		0.996		0.950			0.950				0.998	
Satd. Flow (prot)	0	1494	0	1648	1500	0	1601	1685	1432	0	1678	0
FIt Permitted		0.971		0.261			0.310				0.972	
Satd. Flow (perm)	0	1456	0	452	1500	0	522	1685	1388	0	1634	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		273			20				177		1	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		115.6			261.4			530.0			459.6	
Travel Time (s)		8.3			18.8			38.2			33.1	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	5%	5%	5%	5%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	25	6	273	233	6	20	90	508	177	23	566	8
Shared Lane Traffic (%)	•	004	_			<u>,</u>				•		-
Lane Group Flow (vph)	0	304	0	233	26	0	90	508	177	0	597	0
Turn Type	Perm			pm+pt	<u>,</u>		pm+pt		Perm	Perm	•	
Protected Phases		4		3	8		5	2	0	0	6	
Permitted Phases	4			8	0		2	0	2	6	0	
Detector Phase	4	4		3	8		5	2	2	6	6	_
Switch Phase	10.0	10.0		F 0	10.0		F 0	20.0	20.0	20.0	20.0	
Minimum Initial (s)	10.0	10.0		5.0	10.0		5.0	20.0	20.0	20.0	20.0	_
Minimum Split (s)	25.5	25.5	0.0	12.0	25.5	0.0	12.0	25.0	25.0	25.0	25.0	0.0
Total Split (s)	25.5	25.5	0.0	12.0	37.5	0.0	12.0	42.5	42.5	30.5	30.5	0.0
Total Split (%)	31.9%	31.9%	0.0%	15.0%	46.9%	0.0%	15.0%	53.1%	53.1%	38.1%	38.1%	0.0%
Maximum Green (s)	20.0 3.5	20.0		9.0	32.0		9.0	37.5 3.5	37.5	25.5	25.5	_
Yellow Time (s)		3.5		3.0	3.5		3.0		3.5	3.5	3.5	
All-Red Time (s) Lost Time Adjust (s)	2.0 0.0	2.0 0.0	0.0	0.0 0.0	2.0 0.0	0.0	0.0 0.0	1.5 0.0	1.5 0.0	1.5 0.0	1.5 0.0	0.0
Total Lost Time (s)	0.0 5.5	0.0 5.5	4.0	0.0 3.0	0.0 5.5	0.0 4.0	0.0 3.0	0.0 5.0	0.0 5.0	0.0 5.0	0.0 5.0	4.0
Lead/Lag			4.0	Lead	5.5	4.0	Lead	5.0	5.0			4.0
Lead-Lag Optimize?	Lag	Lag		Lead			Leau			Lag	Lag	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0 3.0	3.0 3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0 3.0	
	5.0	3.0		5.0	5.0		5.0	5.0	5.0	5.0	3.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_AM.syn

	٦	-	\mathbf{F}	4	+	*	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	C-Min	C-Min	C-Min	C-Min	
Walk Time (s)	8.0	8.0			8.0			8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0			12.0			10.0	10.0	10.0	10.0	
Pedestrian Calls (#/hr)	5	5			5			5	5	5	5	
Act Effct Green (s)		12.3		26.8	24.3		47.2	45.2	45.2		36.8	
Actuated g/C Ratio		0.15		0.34	0.30		0.59	0.56	0.56		0.46	
v/c Ratio		0.67		0.81	0.06		0.22	0.53	0.21		0.79	
Control Delay		13.4		44.3	9.4		9.6	14.4	2.5		34.2	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0		0.0	
Total Delay		13.4		44.3	9.4		9.6	14.4	2.5		34.2	
LOS		В		D	А		А	В	А		С	
Approach Delay		13.4			40.8			11.1			34.2	
Approach LOS		В			D			В			С	
Queue Length 50th (m)		4.3		28.4	0.7		4.9	40.8	0.0		73.5	
Queue Length 95th (m)		21.6		#41.9	4.8		14.0	84.9	9.0		#166.8	
Internal Link Dist (m)		91.6			237.4			506.0			435.6	
Turn Bay Length (m)				60.0			60.0					
Base Capacity (vph)		569		286	612		429	953	862		752	
Starvation Cap Reductn		0		0	0		0	0	0		0	
Spillback Cap Reductn		0		0	0		0	0	0		0	
Storage Cap Reductn		0		0	0		0	0	0		0	
Reduced v/c Ratio		0.53		0.81	0.04		0.21	0.53	0.21		0.79	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 0 (0%), Referenced	to phase 2:	NBTL and	l 6:SBTL,	Start of (Green, Ma	aster Inter	section					
Natural Cycle: 90												
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 0.81												
Intersection Signal Delay: 2					tersectior							
Intersection Capacity Utiliza	ation 91.1%			IC	CU Level o	of Service	F					
Analysis Period (min) 15												
# 95th percentile volume			eue may	be longer								
Queue shown is maximu	ım after two	cycles.										
Splits and Phases: 10: 40) Ave N & S	cenic Driv	/e N									

⊲ † _{ø2}		√ ø3	→ ₀₄
42.5 s		12 s	25.5 s
▲ ø5	₽ ∞6	4 8	
12 s	30.5 s	37.5 s	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_AM.syn

	٦	+	\mathbf{F}	4	+	•	•	†	1	1	ţ	-∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	4		5	4			4	
Volume (vph)	12	10	143	201	3	61	50	98	338	60	180	6
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%	-	-	0%	-	-	0%		-	0%	
Storage Length (m)	0.0		0.0	60.0		0.0	60.0		0.0	0.0		0.0
Storage Lanes	0		0	1		0	1		0	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97		0.99	0.97		0.99	0.98			1.00	
Frt		0.883			0.856			0.884			0.997	
Flt Protected		0.996		0.950			0.950				0.988	
Satd. Flow (prot)	0	1486	0	1601	1401	0	1601	1454	0	0	1659	0
FIt Permitted		0.974		0.494			0.598				0.815	
Satd. Flow (perm)	0	1452	0	827	1401	0	1002	1454	0	0	1367	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		162			69			259			2	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		159.6			175.9			459.6			82.0	
Travel Time (s)		11.5			12.7			33.1			5.9	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	5%	5%	5%	5%	5%	5%	5%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	14	11	162	228	3	69	57	111	384	68	205	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	187	0	228	72	0	57	495	0	0	280	0
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	10.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	25.0	25.0		12.0	25.0		25.0	25.0		25.0	25.0	
Total Split (s)	29.0	29.0	0.0	14.0	43.0	0.0	37.0	37.0	0.0	37.0	37.0	0.0
Total Split (%)	36.3%	36.3%	0.0%	17.5%	53.8%	0.0%	46.3%	46.3%	0.0%	46.3%	46.3%	0.0%
Maximum Green (s)	24.0	24.0		11.0	38.0		32.0	32.0		32.0	32.0	
Yellow Time (s)	3.5	3.5		3.0	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		0.0	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	3.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lead	Lead		Lag								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_AM.syn

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	1	۲	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Walk Time (s)	8.0	8.0			8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0			12.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5			5		5	5		5	5	
Act Effct Green (s)		12.0		25.0	23.0		47.0	47.0			47.0	
Actuated g/C Ratio		0.15		0.31	0.29		0.59	0.59			0.59	
v/c Ratio		0.53		0.68	0.16		0.10	0.52			0.35	
Control Delay		12.7		36.3	6.1		2.4	5.0			11.2	
Queue Delay		0.0		0.0	0.0		0.0	0.0			0.0	
Total Delay		12.7		36.3	6.1		2.4	5.0			11.2	
LOS		В		D	А		А	А			В	
Approach Delay		12.7			29.1			4.8			11.2	
Approach LOS		В			С			А			В	
Queue Length 50th (m)		3.4		28.3	0.3		0.3	0.0			18.8	
Queue Length 95th (m)		17.0		39.9	7.7		m3.9	94.4			41.1	
Internal Link Dist (m)		135.6			151.9			435.6			58.0	
Turn Bay Length (m)				60.0			60.0					
Base Capacity (vph)		549		409	702		589	961			805	
Starvation Cap Reductn		0		0	0		0	0			0	
Spillback Cap Reductn		0		0	0		0	0			0	
Storage Cap Reductn		0		0	0		0	0			0	
Reduced v/c Ratio		0.34		0.56	0.10		0.10	0.52			0.35	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 40 (50%), Reference	ed to phase	2:NBTL a	ind 6:SBT	L, Start o	of Green							
Natural Cycle: 65												
Control Type: Actuated-Cod	ordinated											
Maximum v/c Ratio: 0.68												
Intersection Signal Delay: 1				In	tersectior	n LOS: B						
Intersection Capacity Utiliza	ation 86.9%			IC	CU Level o	of Service	E					
Analysis Period (min) 15												
m Volume for 95th percer	ntile queue i	s metered	by upstro	eam sign	al.							

Splits and Phases: 30: 44 Ave N & Scenic Drive N

↑ ø2	<u>⊿</u> _ ø4	🖌 ø3
37 s	29 s	14 s
↓ ~ ø6	↓ ø8	
37 s	43 s	

	≯	+	*	4	t	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			4			4	
Volume (vph)	7	401	35	112	190	31	22	114	222	21	83	21
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	60.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.98			0.99	
Frt		0.989			0.988			0.916			0.977	
Flt Protected		0.999			0.983			0.997			0.992	
Satd. Flow (prot)	0	1661	0	0	1632	0	0	1557	0	0	1673	0
Flt Permitted		0.993			0.739			0.975			0.913	
Satd. Flow (perm)	0	1651	0	0	1226	0	0	1522	0	0	1539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		9			11			158			20	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		154.8			151.2			164.3			51.5	
Travel Time (s)		11.1			10.9			11.8			3.7	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	5%	5%	5%	5%	5%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	8	456	40	127	216	35	25	130	252	24	94	24
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	504	0	0	378	0	0	407	0	0	142	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8	-		2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase							10.0	40.0		40.0	40.0	
Minimum Initial (s)	20.0	20.0		20.0	20.0		10.0	10.0		10.0	10.0	_
Minimum Split (s)	25.0	25.0		25.0	25.0		23.0	23.0		23.0	23.0	
Total Split (s)	32.0	32.0	0.0	32.0	32.0	0.0	28.0	28.0	0.0	28.0	28.0	0.0
Total Split (%)	53.3%	53.3%	0.0%	53.3%	53.3%	0.0%	46.7%	46.7%	0.0%	46.7%	46.7%	0.0%
Maximum Green (s)	27.0	27.0		27.0	27.0		23.0	23.0		23.0	23.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5	0.0	1.5	1.5	0.0	1.5	1.5	0.0	1.5	1.5	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag												
Lead-Lag Optimize?	0.0	0.0			0.0					0.0		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_AM.syn

	٦	→	\mathbf{F}	4	+	*	٩.	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	Min	Min		Min	Min		None	None		None	None	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5		5	5	
Act Effct Green (s)		22.8			22.8			14.4			14.4	
Actuated g/C Ratio		0.48			0.48			0.30			0.30	
v/c Ratio		0.63			0.64			0.71			0.29	
Control Delay		14.6			16.4			16.5			13.0	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		14.6			16.4			16.5			13.0	
LOS		В			В			В			В	
Approach Delay		14.6			16.4			16.5			13.0	
Approach LOS		В			В			В			В	
Queue Length 50th (m)		25.8			19.1			15.1			6.8	
Queue Length 95th (m)		67.4			55.7			42.1			18.6	
Internal Link Dist (m)		130.8			127.2			140.3			27.5	
Turn Bay Length (m)												
Base Capacity (vph)		969			721			837			777	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.52			0.52			0.49			0.18	
Intersection Summary												
71	Other											
Cycle Length: 60												
Actuated Cycle Length: 47.5	5											
Natural Cycle: 55												
Control Type: Actuated-Unc	coordinated											
Maximum v/c Ratio: 0.71												
Intersection Signal Delay: 1					tersection		_					
Intersection Capacity Utiliza	tion 83.2%			IC	U Level c	of Service	E					
Analysis Period (min) 15												

Splits and Phases: 34: 44 Ave N & Uplands Boulevard N

↑	→ ₀₄	
28 s	32 s	
↓ ~ _{ø6}	€ ø8	
28 s	32 s	

	≯	→	\mathbf{F}	1	-	•	1	T.	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		\$		ሻ	¢Î,			4			\$	
Volume (vph)	7	401	35	112	190	31	22	114	222	21	83	2
deal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	60.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	1		0	0		0	0		(
Taper Length (m)	2.5		2.5	30.0		2.5	2.5		2.5	2.5		2.
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Ped Bike Factor		1.00		1.00	1.00			0.98			0.99	
Frt		0.989			0.979			0.916			0.977	
Flt Protected		0.999		0.950				0.997			0.992	
Satd. Flow (prot)	0	1661	0	1601	1643	0	0	1557	0	0	1673	(
FIt Permitted		0.995		0.455				0.975			0.914	
Satd. Flow (perm)	0	1654	0	764	1643	0	0	1522	0	0	1541	(
Right Turn on Red			Yes			Yes			Yes			Ye
Satd. Flow (RTOR)		9			18			158			20	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		154.8			151.2			164.3			51.5	
Travel Time (s)		11.1			10.9			11.8			3.7	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		!
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.8
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	5%	5%	5%	5%	5%	2%	2%	2%	2%	2%	29
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	(
Parking (#/hr)												
Vid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	8	456	40	127	216	35	25	130	252	24	94	2
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	504	0	127	251	0	0	407	0	0	142	(
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Vinimum Initial (s)	20.0	20.0		20.0	20.0		10.0	10.0		10.0	10.0	
Vinimum Split (s)	25.0	25.0		25.0	25.0		23.0	23.0		23.0	23.0	
Total Split (s)	32.0	32.0	0.0	32.0	32.0	0.0	28.0	28.0	0.0	28.0	28.0	0.
Fotal Split (%)	53.3%	53.3%	0.0%	53.3%	53.3%	0.0%	46.7%	46.7%	0.0%	46.7%	46.7%	0.09
Vaximum Green (s)	27.0	27.0		27.0	27.0		23.0	23.0		23.0	23.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Fotal Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Vinimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	

Blackwolf Stage 2 2030 Horizon Post Development Volumes 34: 44 Ave N & Uplands Boulevard N - UPGRADED

AM Peak 4/25/2014

	≯	-	\mathbf{r}	4	-	×	1	1	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	Min	Min		Min	Min		None	None		None	None	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5		5	5	
Act Effct Green (s)		22.0		22.0	22.0			14.2			14.2	
Actuated g/C Ratio		0.47		0.47	0.47			0.31			0.31	
v/c Ratio		0.64		0.35	0.32			0.71			0.29	
Control Delay		14.8		12.7	9.4			16.0			12.5	
Queue Delay		0.0		0.0	0.0			0.0			0.0	
Total Delay		14.8		12.7	9.4			16.0			12.5	
LOS		В		В	А			В			В	
Approach Delay		14.8			10.5			16.0			12.5	
Approach LOS		В			В			В			В	
Queue Length 50th (m)		24.9		5.4	9.5			15.1			6.8	
Queue Length 95th (m)		67.4		19.7	28.4			42.1			18.5	
Internal Link Dist (m)		130.8			127.2			140.3			27.5	
Turn Bay Length (m)				60.0								
Base Capacity (vph)		990		456	987			851			793	
Starvation Cap Reductn		0		0	0			0			0	
Spillback Cap Reductn		0		0	0			0			0	
Storage Cap Reductn		0		0	0			0			0	
Reduced v/c Ratio		0.51		0.28	0.25			0.48			0.18	
Intersection Summary												
	ther											
Cycle Length: 60												
Actuated Cycle Length: 46.4												
Natural Cycle: 50												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.71												
Intersection Signal Delay: 13.					tersectior							
Intersection Capacity Utilization	on 80.2%			IC	U Level o	of Service	D					
Analysis Period (min) 15												
Splits and Phases: 34: 44 /	Ave N & L	Iplands B	oulevard	N								
↑ ⁰²				_	🎝 _{ø4}							

↑↑ _{ø2}	🔺 ₀₄
28 s	32 s
↓ ⊳ ø6	₩ ø8
28 s	32 s

Synchro 7 - Report

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_AM_upgrade_to_44_ave_uplands_blvd.syn

Synchro 7 - Report V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_AM_upgrade_to_44_ave_uplands_blvd.syn

MOVEMENT SUMMARY

44 Ave N / Uplands Boulevard N Intersection Roundabout

Movement Performance - Vehicles												
	_	Demand		Deg.	Average	Level of	95% Back of	of Queue	Prop.	Effective	Average	
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
Coutbul	la la ada. F	veh/h	%	v/c	sec		veh	m		per veh	km/h	
	· .	Boulevard N	0.0	0 500	44.0		4.0	05.7	0.00	1.00	00.7	
3	L	25	2.0	0.568	14.9	LOS B	4.6	35.7	0.80	1.02	29.7	
8	Т	130	2.0	0.568	8.2	LOS A	4.6	35.7	0.80	0.88	32.2	
18	R	252	2.0	0.568	9.7	LOS A	4.6	35.7	0.80	0.92	31.8	
Approac	h	407	2.0	0.568	9.5	LOS A	4.6	35.7	0.80	0.91	31.7	
East: 44	Ave N											
1	L	127	5.0	0.380	10.1	LOS B	2.4	19.4	0.46	0.78	34.0	
6	Т	216	5.0	0.380	3.4	LOS A	2.4	19.4	0.46	0.39	37.0	
16	R	35	5.0	0.380	4.9	LOS A	2.4	19.4	0.46	0.52	36.3	
Approac	h	378	5.0	0.380	5.8	LOS A	2.4	19.4	0.46	0.53	35.8	
North: U	plands E	Boulevard N										
7	L	24	2.0	0.174	11.2	LOS B	0.9	6.8	0.53	0.87	33.1	
4	Т	94	2.0	0.174	4.5	LOS A	0.9	6.8	0.53	0.51	36.5	
14	R	24	2.0	0.174	6.0	LOS A	0.9	6.8	0.53	0.61	36.0	
Approac	h	142	2.0	0.174	5.9	LOS A	0.9	6.8	0.53	0.59	35.7	
West: 44	4 Ave N											
5	L	8	5.0	0.539	11.2	LOS B	3.7	29.4	0.60	0.90	33.7	
2	Т	456	5.0	0.539	4.5	LOS A	3.7	29.4	0.60	0.51	36.3	
12	R	40	5.0	0.539	6.1	LOS A	3.7	29.4	0.60	0.64	36.0	
Approac	:h	503	5.0	0.539	4.7	LOS A	3.7	29.4	0.60	0.53	36.2	
All Vehic	cles	1431	3.8	0.568	6.5	LOS A	4.6	35.7	0.61	0.64	34.7	

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Friday, April 25, 2014 9:49:35 AM SIDRA INTERSECTION 5.1.5.2006 Project: Not Saved 8001103, STANTEC CONSULTING LTD., SINGLE Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

	٦	+	Ļ	*	*	
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्भ	4Î		¥	
Volume (veh/h)	52	195	187	21	13	32
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	59	222	212	24	15	36
Pedestrians		5	5		5	
Lane Width (m)		3.7	3.7		3.7	
Walking Speed (m/s)		1.2	1.2		1.2	
Percent Blockage		0	0		0	
Right turn flare (veh)		U	U		U	
Median type		None	None			
Median storage veh)		NULLE	NULLE			
Upstream signal (m)		261				
pX, platoon unblocked		201				
vC, conflicting volume	241				574	234
vC1, stage 1 conf vol	241				514	204
vC2, stage 2 conf vol vCu, unblocked vol	241				574	234
	4.1				574 6.4	234 6.2
tC, single (s)	4.1				0.4	0.2
tC, 2 stage (s)	0.0				25	2.2
tF (s)	2.2				3.5	3.3
p0 queue free %	96				97	95
cM capacity (veh/h)	1319				455	798
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	281	236	51			
Volume Left	59	0	15			
Volume Right	0	24	36			
cSH	1319	1700	655			
Volume to Capacity	0.04	0.14	0.08			
Queue Length 95th (m)	1.1	0.0	1.9			
Control Delay (s)	2.0	0.0	11.0			
Lane LOS	А		В			
Approach Delay (s)	2.0	0.0	11.0			
Approach LOS			В			
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utiliz	zation		41.4%	IC	U Level o	of Service
Analysis Period (min)			15			
,						

	٦	-	\mathbf{F}	•	+	•	٩.	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			4			4	
Volume (veh/h)	34	166	7	6	174	43	14	5	12	27	3	20
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	39	189	8	7	198	49	16	6	14	31	3	23
Pedestrians		5			5			5			5	
Lane Width (m)		3.7			3.7			3.7			3.7	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			0			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	252			202			540	540	203	532	520	232
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	252			202			540	540	203	532	520	232
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	97			100			96	99	98	93	99	97
cM capacity (veh/h)	1308			1364			419	429	831	428	441	800
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	235	253	35	57								
Volume Left	39	7	16	31								
Volume Right	8	49	14	23								
cSH	1308	1364	521	527								
Volume to Capacity	0.03	0.00	0.07	0.11								
Queue Length 95th (m)	0.7	0.1	1.6	2.7								
Control Delay (s)	1.5	0.2	12.4	12.7								
Lane LOS	А	А	В	В								
Approach Delay (s)	1.5	0.2	12.4	12.7								
Approach LOS			В	В								
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utilization	tion		41.2%	IC	CU Level a	f Service			А			
Analysis Period (min)			15									

	≯	-	+	*	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्भ	eî 🗧		Y	
Volume (veh/h)	19	186	213	19	11	11
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	22	211	242	22	12	12
Pedestrians		5	5		5	
Lane Width (m)		3.7	3.7		3.7	
Walking Speed (m/s)		1.2	1.2		1.2	
Percent Blockage		0	0		0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	269				517	263
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	269				517	263
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	98				98	98
cM capacity (veh/h)	1289				505	769
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	233	264	25			
Volume Left	22	0	12			
Volume Right	0	22	12			
cSH	1289	1700	610			
Volume to Capacity	0.02	0.16	0.04			
Queue Length 95th (m)	0.4	0.0	1.0			
Control Delay (s)	0.9	0.0	11.2			
Lane LOS	А		В			
Approach Delay (s)	0.9	0.0	11.2			
Approach LOS			В			
Intersection Summary						
Average Delay			0.9			
Intersection Capacity Utiliza	ation		39.3%	IC	U Level c	f Service
Analysis Period (min)			15			
,						

	٦	-	\mathbf{r}	•	-	*	٠	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	93	52	52	33	28	21	88	177	53	34	216	116
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	106	59	59	38	32	24	100	201	60	39	245	132
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	224	93	361	416								
Volume Left (vph)	106	38	100	39								
Volume Right (vph)	59	24	60	132								
Hadj (s)	-0.03	-0.04	-0.01	-0.14								
Departure Headway (s)	6.2	6.6	5.6	5.4								
Degree Utilization, x	0.39	0.17	0.57	0.63								
Capacity (veh/h)	512	445	604	635								
Control Delay (s)	13.1	10.9	15.7	17.1								
Approach Delay (s)	13.1	10.9	15.7	17.1								
Approach LOS	В	В	С	С								
Intersection Summary												
Delay			15.3									
HCM Level of Service			С									
Intersection Capacity Utilizat	tion		64.0%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

	۶	-	\mathbf{r}	∢	+	•	٩.	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	5	21	26	15	35	7	43	13	27	11	8	8
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	6	24	30	17	40	8	49	15	31	12	9	9
Pedestrians		5			5			5			5	
Lane Width (m)		3.7			3.7			3.7			3.7	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			0			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	53			58			151	142	49	176	153	54
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	53			58			151	142	49	176	153	54
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			94	98	97	98	99	99
cM capacity (veh/h)	1546			1539			780	732	1011	731	722	1005
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	59	65	94	31								
Volume Left	6	17	49	12								
Volume Right	30	8	31	9								
cSH	1546	1539	833	792								
Volume to Capacity	0.00	0.01	0.11	0.04								
Queue Length 95th (m)	0.1	0.3	2.9	0.9								
Control Delay (s)	0.7	2.0	9.9	9.7								
Lane LOS	А	Α	А	А								
Approach Delay (s)	0.7	2.0	9.9	9.7								
Approach LOS			А	А								
Intersection Summary												
Average Delay			5.6									
Intersection Capacity Utilization	tion		23.0%	IC	CU Level c	of Service			А			
Analysis Period (min)			15									

	≯	*	•	1	Ļ	∢_
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	4Î	
Volume (veh/h)	22	24	41	250	342	36
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	25	27	47	284	389	41
Pedestrians	5		••	5	5	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.2			1.2	1.2	
Percent Blockage	0			0	0	
Right turn flare (veh)	0			0	U	
Median type				None	None	
Median storage veh)				NULLE	NULLE	
Upstream signal (m)					164	
pX, platoon unblocked	1.00	1.00	1.00		104	
	796	419	435			
vC, conflicting volume	790	419	435			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	705	440	400			
vCu, unblocked vol	795	416	432			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	<u> </u>					
tF (s)	3.5	3.3	2.2			
p0 queue free %	93	96	96			
cM capacity (veh/h)	338	629	1120			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	52	331	430			
Volume Left	25	47	0			
Volume Right	27	0	41			
cSH	446	1120	1700			
Volume to Capacity	0.12	0.04	0.25			
Queue Length 95th (m)	3.0	1.0	0.0			
Control Delay (s)	14.1	1.5	0.0			
Lane LOS	В	A				
Approach Delay (s)	14.1	1.5	0.0			
Approach LOS	В		010			
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utiliza	ation		53.6%	IC	CU Level of	Service
Analysis Period (min)			15			
			15			

	-	\mathbf{r}	4	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f,			र्स	¥	
Volume (veh/h)	275	32	15	412	19	9
Sign Control	Free	•-		Free	Stop	-
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	312	36	17	468	22	10
Pedestrians	5	••		5	5	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.2			1.2	1.2	
Percent Blockage	0			0	0	
Right turn flare (veh)	v			v	v	
Median type	None			None		
Median storage veh)	Rono			10110		
Upstream signal (m)	176					
pX, platoon unblocked	110					
vC, conflicting volume			354		843	341
vC1, stage 1 conf vol			007		010	UTI
vC2, stage 2 conf vol						
vCu, unblocked vol			354		843	341
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)			7.1		0.7	0.2
tF (s)			2.2		3.5	3.3
p0 queue free %			99		93	99
cM capacity (veh/h)			1200		326	696
, ,					020	000
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	349	485	32			
Volume Left	0	17	22			
Volume Right	36	0	10			
cSH	1700	1200	394			
Volume to Capacity	0.21	0.01	0.08			
Queue Length 95th (m)	0.0	0.3	2.0			
Control Delay (s)	0.0	0.4	14.9			
Lane LOS		А	В			
Approach Delay (s)	0.0	0.4	14.9			
Approach LOS			В			
Intersection Summary						
Average Delay			0.8			
Intersection Capacity Utiliza	tion		48.3%	IC	U Level c	of Service
Analysis Period (min)			15			

	٦	-	\mathbf{r}	4	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Volume (veh/h)	11	259	14	14	411	22	9	5	15	12	5	6
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	12	294	16	16	467	25	10	6	17	14	6	7
Pedestrians		5			5			5			5	
Lane Width (m)		3.7			3.7			3.7			3.7	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			0			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					377							
pX, platoon unblocked												
vC, conflicting volume	497			315			858	861	312	869	857	490
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	497			315			858	861	312	869	857	490
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			99			96	98	98	95	98	99
cM capacity (veh/h)	1062			1240			260	284	722	253	285	574
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	323	508	33	26								
Volume Left	12	16	10	14								
Volume Right	12	25	17	7								
cSH	1062	1240	397	305								
Volume to Capacity	0.01	0.01	0.08	0.09								
Queue Length 95th (m)	0.01	0.01	2.0	2.1								
Control Delay (s)	0.3	0.3	14.9	17.9								
Lane LOS	0.4 A	A A	В	C								
Approach Delay (s)	0.4	0.4	14.9	17.9								
Approach LOS	0.4	0.4	В	C								
Intersection Summary												
Average Delay			1.5									
Intersection Capacity Utiliza	tion		42.3%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

	-	\mathbf{r}	-	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4Î			د	¥	
Volume (veh/h)	274	13	19	440	7	11
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	311	15	22	500	8	12
Pedestrians	5			5	5	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.2			1.2	1.2	
Percent Blockage	0			0	0	
Right turn flare (veh)	Ŭ					
Median type	None			None		
Median storage veh)						
Upstream signal (m)				155		
pX, platoon unblocked					0.92	
vC, conflicting volume			331		872	329
vC1, stage 1 conf vol					••-	
vC2, stage 2 conf vol						
vCu, unblocked vol			331		820	329
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						•
tF (s)			2.2		3.5	3.3
p0 queue free %			98		97	98
cM capacity (veh/h)			1223		310	707
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	326	522	20			
Volume Left	0	22	8			
Volume Right	15	0	12			
cSH	1700	1223	472			
Volume to Capacity	0.19	0.02	0.04			
Queue Length 95th (m)	0.0	0.4	1.0			
Control Delay (s)	0.0	0.5	13.0			
Lane LOS		А	В			
Approach Delay (s)	0.0	0.5	13.0			
Approach LOS			В			
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	ation		53.4%	IC	U Level o	of Service
Analysis Period (min)			15			

	٦	+	7	4	+	×	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	4Î		5	^	1		4	
Volume (vph)	15	5	147	194	5	24	237	580	225	23	548	21
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)	-	0%	-		0%		-	0%	-	-	0%	
Storage Length (m)	0.0		0.0	60.0		0.0	60.0		0.0	0.0		0.0
Storage Lanes	0		0	1		0	1		1	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98		1.00	0.97				0.97		1.00	
Frt		0.881			0.877				0.850		0.995	
FIt Protected		0.996		0.950			0.950				0.998	
Satd. Flow (prot)	0	1496	0	1648	1481	0	1601	1685	1432	0	1671	0
FIt Permitted		0.968		0.267			0.294				0.963	
Satd. Flow (perm)	0	1453	0	461	1481	0	495	1685	1384	0	1612	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		167			27				256		2	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		115.6			261.4			530.0			459.6	
Travel Time (s)		8.3			18.8			38.2			33.1	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	5%	5%	5%	5%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	17	6	167	220	6	27	269	659	256	26	623	24
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	190	0	220	33	0	269	659	256	0	673	0
Turn Type	Perm			pm+pt			pm+pt		Perm	Perm		
Protected Phases		4		3	8		5	2			6	
Permitted Phases	4			8	-		2	-	2	6		
Detector Phase	4	4		3	8		5	2	2	6	6	
Switch Phase	40.0	40.0			40.0							
Minimum Initial (s)	10.0	10.0		5.0	10.0		5.0	20.0	20.0	20.0	20.0	
Minimum Split (s)	25.5	25.5	0.0	12.0	25.5	0.0	12.0	25.0	25.0	25.0	25.0	0.0
Total Split (s)	25.5	25.5	0.0	14.0	39.5	0.0	15.0	60.5	60.5	45.5	45.5	0.0
Total Split (%)	25.5%	25.5%	0.0%	14.0%	39.5%	0.0%	15.0%	60.5%	60.5%	45.5%	45.5%	0.0%
Maximum Green (s)	20.0	20.0		11.0	34.0		12.0	55.5	55.5	40.5	40.5	
Yellow Time (s)	3.5	3.5		3.0	3.5		3.0	3.5	3.5	3.5	3.5	
All-Red Time (s)	2.0	2.0	0.0	0.0	2.0	0.0	0.0	1.5	1.5	1.5	1.5	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	4.0	3.0	5.5	4.0	3.0	5.0	5.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead			Lead			Lag	Lag	
Lead-Lag Optimize?	0.0	• •		0.0			0.0	0.0		0.0	• •	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_PM.syn

	٦	-	$\mathbf{\hat{z}}$	4	-	*	•	1	1	1	↓	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Recall Mode	None	None		None	None		None	C-Min	C-Min	C-Min	C-Min	
Walk Time (s)	8.0	8.0			8.0			8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0			12.0			10.0	10.0	10.0	10.0	
Pedestrian Calls (#/hr)	5	5			5			5	5	5	5	
Act Effct Green (s)		12.0		28.4	25.9		65.6	63.6	63.6		49.0	
Actuated g/C Ratio		0.12		0.28	0.26		0.66	0.64	0.64		0.49	
v/c Ratio		0.59		0.85	0.08		0.60	0.62	0.26		0.85	
Control Delay		16.5		58.2	11.8		13.8	14.9	2.0		27.2	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0		0.0	
Total Delay		16.5		58.2	11.8		13.8	14.9	2.0		27.2	
LOS		В		Е	В		В	В	А		С	
Approach Delay		16.5			52.1			11.9			27.2	
Approach LOS		В			D			В			С	
Queue Length 50th (m)		4.1		36.2	0.9		18.1	65.2	0.0		114.8	
Queue Length 95th (m)		20.8		#54.1	6.8		38.3	124.9	9.6		#194.2	
Internal Link Dist (m)		91.6			237.4			506.0			435.6	
Turn Bay Length (m)				60.0			60.0					
Base Capacity (vph)		424		262	521		462	1071	973		791	
Starvation Cap Reductn		0		0	0		0	0	0		0	
Spillback Cap Reductn		0		0	0		0	0	0		0	
Storage Cap Reductn		0		0	0		0	0	0		0	
Reduced v/c Ratio		0.45		0.84	0.06		0.58	0.62	0.26		0.85	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 10												
Offset: 0 (0%), Referenced	to phase 2:	NBTL and	6:SBTL,	Start of (Green, Ma	aster Inter	section					
Natural Cycle: 90												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.85												
Intersection Signal Delay: 2	21.2			In	ntersectior	LOS: C						
Intersection Capacity Utilization	ation 109.5%	6		IC	CU Level o	of Service	Н					
Analysis Period (min) 15												
# 95th percentile volume	exceeds ca	pacity, qu	eue may	be longer								
Queue shown is maxim	um after two	cycles.										
Splits and Phases: 10: 4	0 Ave N & S	cenic Driv	/e N									
						I	-					

* 1 ø2		√ ø3	A 04
60.5 s		14 s	25.5 s
↑ ø5	↓ _{ø6}	ø8	
15 s	45.5 s	39.5 s	

	۶	+	7	4	+	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	4Î		5	¢Î,			4	
Volume (vph)	7	6	97	344	11	76	167	211	225	75	147	16
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%		•	0%			0%	•		0%	•••
Storage Length (m)	0.0		0.0	60.0		0.0	60.0		0.0	0.0		0.0
Storage Lanes	0		0	1		0	1		0	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97		0.99	0.97		0.99	0.98			1.00	
Frt		0.881			0.868			0.923			0.991	
FIt Protected		0.997		0.950			0.950				0.985	
Satd. Flow (prot)	0	1480	0	1601	1421	0	1601	1528	0	0	1641	0
FIt Permitted		0.977		0.414			0.581				0.659	
Satd. Flow (perm)	0	1450	0	692	1421	0	972	1528	0	0	1097	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		110			86			69			5	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		159.6			175.9			459.6			82.0	
Travel Time (s)		11.5			12.7			33.1			5.9	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	5%	5%	5%	5%	5%	5%	5%	5%	5%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	8	7	110	391	12	86	190	240	256	85	167	18
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	125	0	391	98	0	190	496	0	0	270	0
Turn Type	Perm			pm+pt			Perm			Perm		
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	10.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	25.0	25.0		12.0	25.0		25.0	25.0		25.0	25.0	
Total Split (s)	25.0	25.0	0.0	26.0	51.0	0.0	49.0	49.0	0.0	49.0	49.0	0.0
Total Split (%)	25.0%	25.0%	0.0%	26.0%	51.0%	0.0%	49.0%	49.0%	0.0%	49.0%	49.0%	0.0%
Maximum Green (s)	20.0	20.0		23.0	46.0		44.0	44.0		44.0	44.0	
Yellow Time (s)	3.5	3.5		3.0	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		0.0	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	3.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_PM.syn

	٦	-	\mathbf{r}	*	←	•	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Walk Time (s)	8.0	8.0			8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0			12.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5			5		5	5		5	5	
Act Effct Green (s)		12.0		40.3	38.3		51.7	51.7			51.7	
Actuated g/C Ratio		0.12		0.40	0.38		0.52	0.52			0.52	
v/c Ratio		0.46		0.80	0.16		0.38	0.60			0.47	
Control Delay		15.5		35.9	5.5		9.6	9.7			20.2	
Queue Delay		0.0		0.0	0.0		0.0	0.0			0.0	
Total Delay		15.5		35.9	5.5		9.6	9.7			20.2	
LOS		В		D	А		А	А			С	
Approach Delay		15.5			29.8			9.7			20.2	
Approach LOS		В			С			А			С	
Queue Length 50th (m)		2.7		59.0	1.4		10.2	21.2			31.1	
Queue Length 95th (m)		16.3		74.0	9.3		17.3	39.1			60.5	
Internal Link Dist (m)		135.6			151.9			435.6			58.0	
Turn Bay Length (m)				60.0			60.0					
Base Capacity (vph)		378		500	700		502	823			569	
Starvation Cap Reductn		0		0	0		0	0			0	
Spillback Cap Reductn		0		0	0		0	0			0	
Storage Cap Reductn		0		0	0		0	0			0	
Reduced v/c Ratio		0.33		0.78	0.14		0.38	0.60			0.47	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 27 (27%), Reference	ed to phase	2:NBTL a	ind 6:SBT	FL, Start o	of Green							
Natural Cycle: 65												
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 0.80												
Intersection Signal Delay: 18	8.2			In	tersectior	LOS: B						
Intersection Capacity Utiliza	tion 83.8%			IC	CU Level o	of Service	ε					
Analysis Period (min) 15												

Splits and Phases: 30: 44 Ave N & Scenic Drive N

	√ ø3	<u> ⊿</u> ₀4
49 s	26 s	25 s
↓ _{∞6}	4 ∕ ø8	
49 s	51 s	

	٦	-	\mathbf{F}	4	+	*	1	1	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	24	229	31	223	404	26	41	98	132	32	123	13
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Grade (%)		0%			0%			0%			0%	
Storage Length (m)	0.0		0.0	60.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (m)	2.5		2.5	2.5		2.5	2.5		2.5	2.5		2.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.98			1.00	
Frt		0.985			0.995			0.934			0.989	
Flt Protected		0.996			0.983			0.992			0.991	
Satd. Flow (prot)	0	1647	0	0	1646	0	0	1582	0	0	1696	0
Flt Permitted		0.922			0.768			0.922			0.840	
Satd. Flow (perm)	0	1525	0	0	1283	0	0	1469	0	0	1436	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		11			4			56			5	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		154.8			151.2			164.3			51.5	
Travel Time (s)		11.1			10.9			11.8			3.7	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)												
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	5%	5%	5%	5%	5%	5%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Adj. Flow (vph)	27	260	35	253	459	30	47	111	150	36	140	15
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	322	0	0	742	0	0	308	0	0	191	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	20.0	20.0		20.0	20.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	25.0	25.0		25.0	25.0		24.0	24.0		23.0	23.0	
Total Split (s)	56.0	56.0	0.0	56.0	56.0	0.0	34.0	34.0	0.0	34.0	34.0	0.0
Total Split (%)	62.2%	62.2%	0.0%	62.2%	62.2%	0.0%	37.8%	37.8%	0.0%	37.8%	37.8%	0.0%
Maximum Green (s)	51.0	51.0		51.0	51.0		29.0	29.0		29.0	29.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_PM.syn

	٦	-	\mathbf{F}	•	←	*	1	Ť	۲	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	Min	Min		Min	Min		None	None		None	None	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5		5	5	
Act Effct Green (s)		51.3			51.3			19.0			19.0	
Actuated g/C Ratio		0.64			0.64			0.24			0.24	
v/c Ratio		0.33			0.90			0.79			0.56	
Control Delay		8.8			31.9			38.1			32.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		8.8			31.9			38.1			32.2	
LOS		А			С			D			С	
Approach Delay		8.8			31.9			38.1			32.2	
Approach LOS		А			С			D			С	
Queue Length 50th (m)		19.0			85.1			36.1			24.9	
Queue Length 95th (m)		42.9			#196.4			60.9			42.4	
Internal Link Dist (m)		130.8			127.2			140.3			27.5	
Turn Bay Length (m)												
Base Capacity (vph)		977			821			569			525	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.33			0.90			0.54			0.36	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 80.	4											
Natural Cycle: 80												
Control Type: Actuated-Une	coordinated											
Maximum v/c Ratio: 0.90												
Intersection Signal Delay: 2					itersectior							
Intersection Capacity Utiliza	ation 88.8%			IC	CU Level o	of Service	E					
Analysis Period (min) 15												
# 95th percentile volume			eue may l	be longer								
Queue shown is maximu	um after two	cycles.										

Splits and Phases: 34: 44 Ave N & Uplands Boulevard N

	<u>⊿</u> _{ø4}	
34 s	56 s	
▶ ø6	◆ Ø8	
34 s	56 s	

Blackwolf Stage 2 2 34: 44 Ave N & Upl							ies				PM Peak 4/25/2014		
·	۶	-	\mathbf{F}	4	+	•	1	Ť	1	1	ţ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF	
Lane Configurations		\$		٦	¢Î,			\$			\$		
Volume (vph)	24	229	31	223	404	26	41	98	132	32	123	1	
deal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	175	
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.	
Grade (%)	0.7	0%	0.7	0.7	0%	0.7	0.7	0%	0.7	0.7	0%	0.	
Storage Length (m)	0.0	070	0.0	60.0	070	0.0	0.0	070	0.0	0.0	070	0.	
Storage Lanes	0		0	1		0.0	0		0	0		0.	
Taper Length (m)	2.5		2.5	30.0		2.5	2.5		2.5	2.5		2.	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	
Ped Bike Factor	1.00	1.00	1.00	0.99	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.0	
Feu bike Facioi Frt		0.985		0.99	0.991			0.98			0.989		
Fit Protected		0.985		0.950	0.991			0.934			0.989		
	0		0		1//7	0	0		0	0			
Satd. Flow (prot)	0	1647	0	1601	1667	0	0	1582	0	0	1696		
Flt Permitted		0.945	6	0.595	1//7	6	_	0.922	6		0.909		
Satd. Flow (perm)	0	1563	0	996	1667	0	0	1469	0	0	1554		
Right Turn on Red			Yes			Yes			Yes			Ye	
Satd. Flow (RTOR)		11			6			56			5		
Link Speed (k/h)		50			50			50			50		
Link Distance (m)		154.8			151.2			164.3			51.5		
Travel Time (s)		11.1			10.9			11.8			3.7		
Confl. Peds. (#/hr)	5		5	5		5	5		5	5			
Confl. Bikes (#/hr)													
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.8	
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	1009	
Heavy Vehicles (%)	5%	5%	5%	5%	5%	5%	2%	2%	2%	2%	2%	29	
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0		
Parking (#/hr)													
Vid-Block Traffic (%)		0%			0%			0%			0%		
Adj. Flow (vph)	27	260	35	253	459	30	47	111	150	36	140	1	
Shared Lane Traffic (%)	27	200	55	200	107	50	17		100	50	110		
Lane Group Flow (vph)	0	322	0	253	489	0	0	308	0	0	191		
Turn Type	Perm	JZZ	0	Perm	407	0	Perm	300	0	Perm	171		
Protected Phases	Feilii	4		Penn	8		Feilii	2		Feilii	6		
Permitted Phases	4	4		8	0		2	2		6	0		
					0			2					
Detector Phase	4	4		8	8		2	2		6	6		
Switch Phase							10.0	10.0		40.0	40.0		
Vinimum Initial (s)	20.0	20.0		20.0	20.0		10.0	10.0		10.0	10.0		
Vinimum Split (s)	25.0	25.0		25.0	25.0		24.0	24.0		23.0	23.0		
Total Split (s)	56.0	56.0	0.0	56.0	56.0	0.0	34.0	34.0	0.0	34.0	34.0	0.	
Total Split (%)	62.2%	62.2%	0.0%	62.2%	62.2%	0.0%	37.8%	37.8%	0.0%	37.8%	37.8%	0.0	
Maximum Green (s)	51.0	51.0		51.0	51.0		29.0	29.0		29.0	29.0		
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5		
All-Red Time (s)	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	
Total Lost Time (s)	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0	4.	
Lead/Lag													
Lead-Lag Optimize?													
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0		

Blackwolf Stage 2 2030 Horizon Post Development Volumes 34: 44 Ave N & Uplands Boulevard N - UPGRADED

4

PM Peak 4/25/2014

	۶	+	*	4	ţ	*	•	Ť	*	*	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	Min	Min		Min	Min		None	None		None	None	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5		5	5	
Act Effct Green (s)		24.0		24.0	24.0			14.4			14.4	
Actuated g/C Ratio		0.49		0.49	0.49			0.29			0.29	
v/c Ratio		0.42		0.52	0.59			0.65			0.41	
Control Delay		10.3		14.0	13.1			20.1			17.3	
Queue Delay		0.0		0.0	0.0			0.0			0.0	
Total Delay		10.3		14.0	13.1			20.1			17.3	
LOS		В		В	В			С			В	
Approach Delay		10.3			13.4			20.1			17.3	
Approach LOS		В			В			С			В	
Queue Length 50th (m)		14.0		12.2	24.4			15.5			10.7	
Queue Length 95th (m)		38.7		37.5	63.9			47.9			32.6	
Internal Link Dist (m)		130.8			127.2			140.3			27.5	
Turn Bay Length (m)				60.0								
Base Capacity (vph)		1477		941	1575			933			966	
Starvation Cap Reductn		0		0	0			0			0	
Spillback Cap Reductn		0		0	0			0			0	
Storage Cap Reductn		0		0	0			0			0	
Reduced v/c Ratio		0.22		0.27	0.31			0.33			0.20	
Intersection Summary												
)ther											
Cycle Length: 90												
Actuated Cycle Length: 48.9												
Natural Cycle: 50												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.65												
Intersection Signal Delay: 14					tersectior							
Intersection Capacity Utilizati	on 75.4%			IC	CU Level o	of Service	D					
Analysis Period (min) 15												
Splits and Phases: 34: 44	Ave N & U	plands B	oulevard	N								
			- A									
 34 ≈			56 s	ø4								

s	56 s	
≫ ø6	₩ _ αβ	
8	56 s	

Synchro 7 - Report

V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_PM_upgrade_to_44_ave_uplands_blvd.syn

Synchro 7 - Report V:\1136\Active\112945510\02_planning\02_report\20140321_report\analysis\synchro\2030_PD_PM_upgrade_to_44_ave_uplands_blvd.syn

MOVEMENT SUMMARY

44 Ave N / Uplands Boulevard N Intersection Roundabout

Movem	ient Per	formance - Ve	hicles								
	τ	Demand	1.15.7	Deg.	Average	Level of	95% Back o		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: L	Inlands F	veh/h Boulevard N	%	v/c	sec	_	veh	m	_	per veh	km/h
3	L	47	2.0	0.368	11.3	LOS B	2.2	17.0	0.60	0.85	32.9
8	Т	111	2.0	0.368	4.6	LOSA	2.2	17.0	0.60	0.53	35.3
18	R	150	2.0	0.368	6.1	LOSA	2.2	17.0	0.60	0.65	35.1
Approac		308	2.0	0.368	6.4	LOSA	2.2	17.0	0.60	0.63	34.8
Appioac	/1	500	2.0	0.300	0.4	LUGA	2.2	17.0	0.00	0.05	54.0
East: 44	Ave N										
1	L	253	5.0	0.723	12.0	LOS B	8.1	63.8	0.72	0.81	32.5
6	Т	459	5.0	0.723	5.3	LOS A	8.1	63.8	0.72	0.62	33.9
16	R	30	5.0	0.723	6.8	LOS A	8.1	63.8	0.72	0.67	34.1
Approac	h	742	5.0	0.723	7.6	LOS A	8.1	63.8	0.72	0.68	33.4
North: U	Iplands B	oulevard N									
7	L	36	2.0	0.377	15.7	LOS B	2.4	18.7	0.85	1.01	29.4
4	Т	140	2.0	0.377	9.0	LOS A	2.4	18.7	0.85	0.90	31.6
14	R	15	2.0	0.377	10.5	LOS B	2.4	18.7	0.85	0.93	31.2
Approac	h	191	2.0	0.377	10.4	LOS B	2.4	18.7	0.85	0.92	31.0
West: 44	4 Ave N										
5	L	27	5.0	0.433	12.7	LOS B	2.7	21.1	0.68	0.95	32.2
2	Т	260	5.0	0.433	5.9	LOS A	2.7	21.1	0.68	0.68	35.1
12	R	35	5.0	0.433	7.5	LOS A	2.7	21.1	0.68	0.76	35.2
Approac	h	323	5.0	0.433	6.7	LOS A	2.7	21.1	0.68	0.71	34.8
All Vehic	cles	1564	4.0	0.723	7.5	LOS A	8.1	63.8	0.70	0.71	33.6

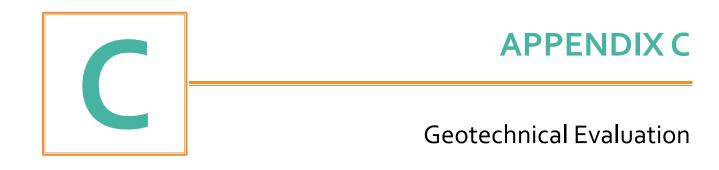
Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.


SIDRA Standard Delay Model used.

Processed: Friday, April 25, 2014 9:49:58 AM SIDRA INTERSECTION 5.1.5.2006 Project: Not Saved 8001103, STANTEC CONSULTING LTD., SINGLE Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

BLACKWOLF STAGE 2 OUTLINE PLAN

STANTEC CONSULTING LTD.

GEOTECHNICAL EVALUATION LANDS NORTH OF UPLANDS OUTLINE PLAN LETHBRIDGE, ALBERTA

REPORT

JANUARY 2012 ISSUED FOR USE EBA FILE: L12101928

creating & delivering

BETTER SOLUTIONS

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Stantec Consulting Ltd. and their agents. EBA Engineering Consultants Ltd. operating as EBA, A Tetra Tech Company (EBA), does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than Stantec Consulting Ltd., or for any project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in EBA's Services Agreement and in the General Conditions provided in Appendix A of this report.

TABLE OF CONTENTS

1.0	INTRODUCTION I					
2.0	PROJECT DETAILS AND SCOPE OF WORK I					
3.0	GEOTECHNICAL FIELD AND LABORATORY WORK					
4.0		SITE CONDITIONS				
	4.1	Surface Features				
	4.2	Historical Aerial Photographic Review				
	4.3	Mining Activity				
	4.4	Soil Stratigraphy				
		4.4.1 Topsoil				
		4.4.2 Clay				
	4.5	4.4.3 Clay Till Groundwater Conditions				
5.0	GEO	TECHNICAL RECOMMENDATIONS				
5.0	5.1	General				
	5.2	Lot Grading				
	5.3	Construction Excavations				
	5.4	Trench Backfill				
	5.5	Backfill Materials and Compaction				
	5.6	Street Subgrade Preparation				
	5.7	Pavement Design and Construction				
	5.8	Concrete Issues				
		5.8.1 Concrete Type				
		5.8.2 Concrete Surface Works				
	5.9	Limit States Design				
	5.10	Shallow Foundations	12			
	5.11	Bored Cast-In-Place Concrete Piles	13			
	5.12	Floor Slabs-On-Grade	14			
	5.13	Structural Slabs	15			
	5.14	Basement Construction	15			
		5.14.1 Basement Floor Slabs	15			
		5.14.2 Below-Grade Walls	16			
	5.15	Foundation Perimeter Drainage Requirements	16			
	5.16	Frost Protection	17			
	5.17	Seismic Design	17			
6.0	STORMWATER POND DEVELOPMENT					
	6.1	General	17			
	6.2	Facility Design	18			

	6.3	Pond C	onstruction	19	
		6.3.1	General Base Preparation	19	
		6.3.2	Remoulded Clay Liner	20	
7.0	DES			21	
8.0	REVIEW OF DESIGN AND CONSTRUCTION				
9.0	LIMITATIONS				
10.0	CLOSURE				

FIGURES

Figure 1 Site Plan and Borehole Locations

APPENDICES

Geotechnical Report – General Conditions
Borehole Logs
Recommended General Design and Construction Guidelines
Laboratory Test Results

I.0 INTRODUCTION

This report presents the results of a geotechnical evaluation, conducted by EBA Engineering Consultants Ltd. operating as EBA, A Tetra Tech Company (EBA), for the proposed Lands North of Uplands Subdivision, to be located in North Lethbridge, Alberta. The legal description of the property is NW ¼ 17-9-21 W4M.

The scope of work for the geotechnical evaluation was described in a proposal issued to Mr. Trent Purvis, P.Eng., of Stantec Consulting Ltd. (Stantec), on January 10, 2011. The objective of this evaluation was to determine the general subsurface conditions in the area of the proposed development and to provide general recommendations for the geotechnical aspects of design and construction for a residential subdivision development. This work is in support of the Outline Plan submission to the City of Lethbridge.

This work is supplemented by a review of previous EBA geotechnical reports in this area, as well as a Phase I environmental site assessment (ESA) for the development by EBA (reported under separate cover).

Authorization to proceed with the evaluation was provided by Stantec.

2.0 **PROJECT DETAILS AND SCOPE OF WORK**

The subject property is located within north Lethbridge, Alberta, as shown on Figure 1, including approximately 158 acres (64 hectares). It is understood that the development will include commercial and residential lots, utility and street infrastructure, as well as stormwater management facilities. The foundation system for the housing will likely choose shallow spread footings with a grade supported lower level floor slab, typical of residential developments in the Lethbridge area. Foundation recommendations for larger structures, such as commercial developments or other facilities, are provided in this report.

It is understood that the proposed street structures will be designed and constructed to City of Lethbridge Infrastructure Services Engineering Standards. The majority of the roadways may comprise designated 'local' pavement structures, with some arterial or collector pavement structures in heavier traffic areas.

The scope of work included twenty-five (25) geotechnical boreholes (for the land development, street, and stormwater developments). A laboratory program was completed to assist in classifying the subsurface soils. This report provides the following general design and construction recommendations:

- Recommended design parameters for footings and pile foundations.
- Recommendations for lot grading, backfill materials, and compaction.
- Recommendations for utility installation, trench excavation, backfill, and compaction standards.
- Recommendations for stormwater management facility design and construction considerations.
- Recommendations for subgrade preparation for street pavements.
- Recommendations for dewatering during construction.
- Recommended design and construction provisions for control of groundwater.
- Recommendations for concrete type.

3.0 GEOTECHNICAL FIELD AND LABORATORY WORK

The fieldwork for this evaluation was carried out on November 28 and 31, 2011. A truck-mounted drill rig was contracted from Chilako Drilling Services Ltd. of Coaldale, Alberta. The rig was equipped with 150 mm diameter solid stem continuous flight augers. EBA's field representative was Mr. Jackson Meadows, C.E.T. The location of buried utilities was carried out through Alberta One-Call.

Twenty-five (25) boreholes (11BH001 through 11BH025) were drilled across the property to depths of 6.6 m and 9.6 m below ground surface. The borehole locations are depicted on Figure 1. The borehole elevations and locations were surveyed and provided by Stantec.

In all boreholes, disturbed grab samples were obtained at depth intervals of 600 mm. The Standard Penetration Test (SPT) was completed at intervals of 1.5 m. All soil samples were visually classified in the field, and the individual soil strata and the interfaces between them were noted. The borehole logs are presented in Appendix B. An explanation of the terms and symbols used on the borehole logs is also included in Appendix B.

Slotted 25 mm diameter polyvinyl chloride (PVC) standpipes were installed in each of the boreholes in order to monitor the groundwater levels. Auger cuttings were used to backfill around the standpipes and they were sealed at the ground surface with bentonite chips.

Classification tests, including natural moisture content, Atterberg Limits, and soluble sulphate content were subsequently performed in the laboratory on samples collected from the boreholes to aid in the determination of engineering properties. The results of the laboratory tests are presented on the borehole logs in Appendix B. In addition, bulk samples were also tested for Standard Proctor moisture density (SPD), as well as remoulded hydraulic conductivity. These results are presented in Appendix D.

4.0 SITE CONDITIONS

4.1 Surface Features

The proposed property is an undeveloped farmland, bounded on the east by the future Uplands Boulevard North right-of-way; on the west by 13 Street North and by Hardieville; to the north by other farmlands; and to the south by the Uplands Subdivision.

The ground surface was noted to be relatively flat, with a slight slope west to the Oldman River valley. The apparent site drainage pattern noted is generally towards the low-lying areas, with marginal off-site drainage noted, resulting in seasonal surface water ponding in some areas.

4.2 Historical Aerial Photographic Review

Based on EBA's understanding of the property's history, including an aerial photograph review from the 1950s to the present day, the land has been used for agricultural purposes.

As part of the aerial photograph review, an earth pile was noted at the centre of the property in a 1999 aerial photograph but was not visible in any other year's photographs. It could be related with the

construction activity of the Uplands Subdivision development to the south at that time. No other ground disturbances are noted.

4.3 Mining Activity

Research was conducted on the possible existence of mine workings within the boundary of the site, including publications by Energy and Utilities Board (EUB) and various documents contained in EBA's library regarding the coal mining industry in the Lethbridge area. The literature indicates the presence of one mine working within a portion of the subject site (Figure 1).

Mine 0003/1 (commonly referred to as Galt No. 6) operated between 1909 and 1935. This was an underground coal mine, operated by Lethbridge Colleries Limited, a subsidiary of the Canadian Pacific Railway Company (from 1912). The depth of mine workings in this area was approximately 130 m (approximate Geodetic Elevation of 774 m). The mine used a room and pillar mining arrangement. It is understood that the majority of the coal pillars were removed from the mine in the area underlying the project site during mine working, prior to mine closure in 1935. This was an extensive mine, underlying the western third of the site and within adjacent lands west, north, and south of the site.

During a previous geotechnical evaluation for the northern portion of Legacy Ridge Subdivision, located just west of Hardieville (for Melcor Development Ltd., in January 2001, EBA File 0404-00-42652), EBA completed an aerial photograph review for this area, as well as field reconnaissance to assess potential coal mine subsidence. With the exception of localized subsidence around the two mine shafts, no significant evidence of subsidence within the project limits has been recorded. This review is supplemented by a detailed mine subsidence study completed by EBA for the lands south of Hardieville, in 1984.

Based on research conducted by others in similar geologic profiles to this site (England, Sladen and Joshi) and from EBA's research noted above, the literature indicates that generally, subsidence at ground surface due to collapse of mine workings (rooms and mine access roadways) occurs within 5 years following closure of the workings, with negligible long term consolidation thereafter. Given the depth of the coal mine workings of 130 m, it is not considered that the proposed development area would be adversely affected by the presence of the underground mine workings.

No mine shafts were noted within the proposed site on the No. 6 Galt Mine map (Section 18-9-21 W4M). The nearest shafts are located approximately 450 m to the west of the site limits. For preliminary consideration, it is EBA's understanding that the setback distance from mine shafts is typically determined by projecting a line up from the base of the mine shaft at an angle of approximately 80 degrees from the horizontal. In this case, with a mine shaft base depth of 130 m, the minimum setback distance would be a minimum circular radius of 23 m around each mine shaft. Therefore, the site is well beyond the setback distance from the shafts and influence by mine shafts need not be considered for this development.

Based on EBA's experience, a number of points should be considered for all such developments where underground mine workings are known to exist. Due to coal mine subsidence, there may be localized tension cracks (referenced as linear features) across this property which may require special attention if encountered below the bearing surfaces. This typically does not affect the foundation load capacity of the site soils. It is recommended that any cracks encountered should be overexcavated to remove any softened infill soil materials and backfilled with compacted general engineered fill (cohesive soils). Therefore, considering this issue, all footing excavations should be observed by experienced personnel. In addition, in the event of residual mine subsidence, there is a possibility of small amounts of ground surface strain that could theoretically be experienced in a worst-case scenario, should an old mine section collapse in the future. Closer engineering examination by a structural engineer and more detailed geotechnical review is recommended for any building higher than two storeys in height or greater than about 30 m length in plan. The review should be intended to verify that type of structures proposed can structurally accommodate these ranges of strain.

4.4 Soil Stratigraphy

It should be noted that geological conditions are innately variable. At the time of preparation of this report, information on the subsurface stratigraphy was available only at discrete borehole locations. In order to develop recommendations from this information, it is necessary to make some assumptions concerning conditions other than at the borehole locations. Adequate field reviews should be provided during construction to check that these assumptions are reasonable.

The following subsections provide a summary of the stratigraphic units encountered at the project site at the specific borehole locations. A more detailed description is provided on the borehole logs provided in Appendix B.

4.4.1 Topsoil

A surficial layer of topsoil was encountered at the borehole locations with varying thicknesses ranging between 100 mm and 200 mm. The topsoil was generally described as clay, silty, sandy, damp, dark brown with roots and organics. The thickness of topsoil should be expected to vary across the lands for the agricultural using purpose.

4.4.2 Clay

A clay layer was encountered below the topsoil at the borehole locations, extending to depths ranging between 0.5 m and 2.2 m. The clay was described as silty, some sand, damp to very moist, medium to high plastic, and stiff in consistency. Moisture contents of clay samples ranged between 11% and 22%. Atterberg Limits testing indicated Liquid Limits of 49% and 40%; and Plastic Limits of 15% and 19%; indicative of medium plasticity. The clay soils are considered to have a medium to high swelling potential. SPT "N" values within this layer ranged from 10 to 15 blows per 300 mm penetration, indicative of stiff consistency.

4.4.3 Clay Till

Clay till was encountered beneath the clay and extended to the borehole termination depths. The clay till was generally described as silty, some sand to sandy, trace gravel, damp to moist, medium to high plastic, stiff to very stiff, and light brown with dark brown mottling. Occasional sand lenses and pockets, coal inclusions, oxide staining, gravel inclusions, and high plastic clay inclusions were also encountered at the borehole locations. Moisture contents of clay till samples ranged between 9% and 31%. Atterberg Limits testing indicated Liquid Limits ranging from 31% to 38%; and Plastic Limits ranging from 11% to 14%; indicative of medium plasticity, with high plastic inclusions.

SPT "N" values within this layer ranged from 8 to 44 blows per 300 mm penetration, indicative of stiff to hard consistency.

The results of SPD testing of the clay till indicate a maximum dry density of 1860 kg/m³ at an optimum moisture content (OMC) of 13.5%.

A more complete description of the subsurface conditions encountered at the borehole locations is provided on the borehole logs presented in Appendix B.

4.5 Groundwater Conditions

The groundwater level was measured on November 21, 2011. The following table summarizes the groundwater monitoring data.

	Depth of Standpipe	Geodetic Elevation	Groundwater M November	
Borehole Number	rehole Number (m) of Borehole (m)		Depth to Groundwater (m)	Elevation of Groundwater (m)
BH001	9.6	912.84	4.95	907.89
BH002	9.6	912.59	7.20	905.39
BH003	9.6	912.39	DRY	-
BH004	9.6	914.16	DRY	-
BH005	9.6	914.64	DRY	-
BH006	9.6	914.66	DRY	-
BH007	9.6	913.58	DRY	-
BH008	9.6	911.14	1.98	909.16
BH009	9.6	916.44	8.20	908.24
BH010	9.6	915.82	4.95	910.87
BH011	9.6	916.65	8.80	907.85
BH012	9.6	915.16	DRY	-
BH013	6.6	913.06	1.49	911.57
BH014	6.6	913.45	6.20	907.25
BH015	6.6	911.02	DRY	-
BH016	6.6	913.75	6.60	907.15
BH017	6.6	913.60	4.83	908.77
BH018	6.6	915.29	DRY	-
BH019	6.6	915.75	DRY	-
BH020	6.6	911.92	DRY	-
BH021	6.6	914.25	DRY	-
BH022	6.6	915.79	DRY	-
BH023	6.6	916.76	6.55	910.21
BH024	6.6	916.37	5.41	910.96
BH025	6.6	916.60	4.47	912.13

Table 4.5: Groundwater Monitoring Data

RPT-L12101928-Lands North of Uplands -Outline Plan- Geotechnical Evaluation.doc CONSULTING ENGINEERS & SCIENTISTS - www.eba.ca It is noted that groundwater levels will fluctuate seasonally in response to climatic conditions, and may be at a different depth when construction commences. Groundwater levels should be monitored prior to development. The intent is to provide an early indication of dewatering requirements during excavation for foundations or utility trenches. Further comments regarding groundwater issues are provided in subsequent sections.

5.0 GEOTECHNICAL RECOMMENDATIONS

5.1 General

The recommendations that follow offer varying options intended to aid in the development of the project concepts and specifications. The recommendations are provided on the understanding and condition that EBA will be retained to review the relevant aspects of the final design (drawings and specifications), and will be retained to conduct such field reviews as are necessary to ensure compliance with geotechnical aspects of the Building Code, this report, and the final plans and specifications. EBA accepts no liability for any use of this report in the event that EBA is not retained to provide these review services.

Recommendations are provided for shallow footings, cast-in-place (CIP) concrete piles, grade supported floor slabs, below grade construction, general site development and lot grading, trench excavation and backfill, stormwater retention ponds, groundwater issues, backfill materials and compaction, roadway subgrade preparation, pavements, and concrete type.

A groundwater study has not been requested as part of this evaluation. It is recommended that weeping tiles for the residences include tie-ins to the storm sewer utility, as per City of Lethbridge Design Standards.

The initial topsoil stripping depth is of particular importance. A topsoil survey is recommended on a phase by phase basis to confirm stripping requirements. Following removal of the surficial organic topsoil, the majority of any underlying B Horizon layer (organic stained, but essentially inorganic clay) can likely remain in place during site stripping and be incorporated into the fill mass during general site grading. Full-time monitoring by experienced personnel is recommended in order to avoid over-stripping and to ensure appropriate material mixing and placement.

Subgrade preparation is required in all lots as well as all paved areas, to City of Lethbridge Standards. This includes stripping of topsoil and deleterious fill materials, scarification, moisture conditioning, and compaction. The native clay soils should be acceptable for site grading purposes. The clay soils appear to be both below and above OMC and as such, moisture conditioning (wetting, mixing, and drying as necessary) will be required to reduce the swelling potential of this soil and to achieve the compaction standards recommended. Proof-rolling within roadways to detect soft areas is also recommended. The contractor should expect soil moisture variability across the site.

All existing utilities and pipelines (whether operational or abandoned) must be located. Existing utility or pipeline trenches pose a particular risk due to settlement of backfill material. Care should be taken to ensure that all existing trenches are excavated to remove the utility/pipeline and backfilled with general engineered fill. Alternatively, the development should be planned to avoid such features. All other existing or historical ground disturbances, if encountered, should be removed and backfilled with general engineered fill.

Shallow footings are generally feasible for residential developments in all areas of the subdivision, most likely in conjunction with full or partial basements. Further recommendations are provided in Section 5.10. However, because footings may be placed within areas of general engineered fill, full-time quality assurance monitoring by geotechnical personnel is required during fill placement. It is noted that placement of foundations on engineered cohesive fill thicknesses greater than 1.5 m require special consideration regarding long-term consolidation of the fill and subsequent performance issues with the foundations/floor slabs-on-grade. Following finalization of the surface grades for the subdivision, this aspect should be addressed, as per City of Lethbridge Design Standards.

CIP concrete piles are a feasible alternative for other developments, such as schools or commercial buildings. However, for drilled pile foundations, the sand lenses and inclusions within the clay till may necessitate the use of casing to prevent sloughing of the pile bores. This may make this foundation alternative less economic in consideration of a shallow foundation system. Recommendations for both of these foundation systems are provided in the following subsections.

Slabs-on-grade for this project must consider the precautions recommended for slabs-on-grade, including the subgrade preparation measures intended to improve slab performance.

All foundation recommendations presented in this report are based on the assumption that an adequate level of monitoring will be provided during construction and that all construction will be carried out by suitably qualified contractors, experienced in foundation and earthworks construction. An adequate level of monitoring is considered to be:

- For shallow foundations and slabs; inspection of bearing surfaces prior to placement of concrete or mudslab, and design review during construction.
- For pile foundations; full time monitoring and design review during construction.
- For earthworks; full-time monitoring and compaction testing.

All such monitoring should be carried out by suitably qualified persons, independent of the contractor. One of the purposes of providing an adequate level of monitoring is to check that recommendations, based on data obtained at discrete borehole locations, are relevant to other areas of the site.

5.2 Lot Grading

The lot grading should be designed and carried out to the current City of Lethbridge Infrastructure Services Engineering Standards, with particulars discussed as follows.

All lots should be graded for drainage at a minimum gradient of 2.0%. The existing surficial site soils, comprising medium to high plastic clay and clay till, are suitable for use as landscape fill materials or for use as general engineered fill materials for lot grading, as defined in Appendix C. The moisture content of the site soil materials at surface generally appears to be both above and below the anticipated OMC for these soils in most areas. It is anticipated therefore, that moisture conditioning consisting of both wetting and drying will be required at the site for proper compaction. Although soil moisture variability should be expected, the earthwork contractor should assess the requirements and should consider such factors as weather and construction procedures.

General engineered fill materials for lot grading should be moisture conditioned to within a range of -1% to +2% of the OMC prior to compaction, and compacted to a minimum of 98% of SPD.

Further recommendations regarding backfill materials and compaction are in Appendix C.

5.3 Construction Excavations

Excavations should be carried out in accordance with the Alberta Occupational Health and Safety (OH&S) Regulations. For this project, the depth for the majority of the excavations is assumed to be less than 3.0 m below existing ground surface. Excavations to deeper depths require special considerations. The following recommendations notwithstanding, the responsibility of trench and all excavation cutslopes resides with the Contractor and should take into consideration site-specific conditions concerning soil stratigraphy and groundwater. All excavations should be reviewed by a geotechnical engineer prior to personnel working within the base of the excavation.

Temporary excavations within stiff clay soils which are to be deeper than 1.5 m should have the sides shored and braced or the slopes should be cut back no steeper than 1.0 horizontal to 1.0 vertical (1H:1V).

Flatter sideslopes may be required in some areas where groundwater is encountered within sand/silt layers interbedded within the clay layers, which may cause local sloughing and instability of the excavation sidewalls. In these instances, the excavation configuration design should be reviewed by experienced personnel, prior to allowing personnel to enter the base of the excavation. Vertical trench cuts using trench box wall support are not recommended for this project due to the inherent difficulty in compacting the backfill materials to an engineered standard, as well as the potential of cave-ins of the excavation sidewalls against the utility box.

Any encountered groundwater seepage should be directed towards sumps for removal. Conventional construction sump pumps should be capable of groundwater control.

The composition and consistencies of the soils encountered along the utility alignments are such that conventional hydraulic excavators should be able to remove these materials.

Temporary surcharge loads, such as spill piles, should not be allowed within a distance equal to the depth of the excavation from an unsupported excavation face or 3.0 m, whichever is greater, while mobile equipment should be kept back at least 3.0 m. All excavation sidewall slopes should be checked regularly for signs of sloughing, especially after rainfall periods. Small earth falls from the sideslopes are a potential source of danger to workmen and must be guarded against.

General recommendations regarding construction excavations are included in Appendix C.

5.4 Trench Backfill

The moisture content of the clay soils encountered across the site generally varies below and above the estimated OMC for the materials. It is expected that such soils would be satisfactory as trench backfill material; however, may require moisture conditioning prior to reworking. It is anticipated; therefore, that moisture conditioning consisting of both wetting and drying or mixing will be required for proper compaction. The earthwork contractor should however, make his own estimate of the requirements and should consider such factors as weather and construction procedures.

Trenches must be backfilled in such a way as to minimize the potential differential settlement and/or frost heave movements. A minimum density of 98% of SPD is recommended for all trench backfill, at a moisture content of between -1% and +2% of optimum. The compacted thickness of each lift of backfill shall not exceed 150 mm. The upper 1.5 m of service trenches should be cut back at a maximum slope of 1H:1V to avoid an abrupt transition between backfill and in situ soil.

It should be noted that the ultimate performance of the trench backfill is directly related to the uniformity of the backfill compaction. In order to achieve this uniformity, the lift thickness and compaction criteria must be strictly enforced.

For frost protection, pipes buried with less than 2.0 m of soil cover (above top of pipe) should be protected with insulation to avoid frost damage or breakage of the pipes. Rigid insulation placed under areas subject to vehicular wheel loadings should be provided with a minimum thickness of 600 mm of compacted granular base.

General recommendations regarding construction excavation, backfill materials and compaction are contained in Appendix C.

5.5 Backfill Materials and Compaction

The existing site soils comprising the predominantly medium plastic clay and clay till are adequate for use as both landscape fill and general engineered fill materials, as defined in Appendix C. Any soil containing deleterious materials should be removed from site. The final decision on approved backfill materials should be made during site construction.

The moisture content of the site soil materials is expected to be variable with respect to the OMC. It is anticipated, therefore, that moisture conditioning will be required at the site for proper backfill placement. The earthwork contractor should make their own estimate of the requirements for moisture conditioning to the recommended standards, and should consider such factors as weather and construction procedures. A contingency for importation of general engineered clay fill is recommended, in the event that the site soils can not be moisture conditioned.

General engineered fill materials in all building areas and for trenches should be moisture conditioned to within a range of -1% to +2% of the OMC prior to compaction, and compacted to a minimum of 98% SPD.

Further recommendations for backfill materials and compaction are in Appendix C.

5.6 Street Subgrade Preparation

Within all paved areas, the upper 300 mm of native clay soils or prepared general engineered fill subgrade should be scarified and uniformly moisture conditioned to between -1% of optimum and 2% over OMC. The subgrade should then be uniformly compacted to a minimum of 98% of SPD.

Based on EBA's local experience, the contractor should be made aware that subgrade difficulties often arise at moisture contents of 3% over optimum, as noted in the current City of Lethbridge Standards, where siltier soils are encountered. Therefore, in practice, the moisture content within proposed paved areas should be limited to no more than 2% over optimum for acceptable subgrade support conditions.

Backfill to raise these areas to subgrade level should be general engineered cohesive fill materials, as defined in the report text or Appendix C, moisture conditioned and compacted as noted previously. The subgrade should be prepared and graded to allow drainage into catchbasins. Proof-rolling of the prepared surface is recommended to identify localized soft areas and for an indication of overall subgrade support characteristics.

It is imperative that positive surface drainage be provided to prevent ponding of water within the roadway structure and subsequent softening and loss of strength of the subgrade materials. Surrounding landscaping should be such that runoff water is prevented from ponding beside paved areas in order to avoid softening and premature failure of the pavement surface.

The soil moisture regime should be considered in achieving the above recommended standards for construction of the subgrades. If localized areas of soft subgrade soils are encountered, provisions may be required to subcut each area and replace with cohesive engineered fill, or alternatively, with granular (pit-run) fill with the use of a geotextile grid or geotextile fabric to strengthen the subgrade support characteristics. Further design information can be provided following initial proof-rolling of the subgrade soils.

5.7 **Pavement Design and Construction**

For the purposes of this report, two design sections are provided. One, if the roadway design classification is as a 'local' roadway and one where the classification is as a 'collector' roadway.

Design Pavement Section						
Material Type	Local Urban (mm)	Collector (mm)				
Surface Course Asphalt Concrete (Type III)*	75	50				
Base Course Asphalt Concrete (Type II)*	-	60				
Granular Base Course*	200	300				

Table 5.7: Pavement Structures

* Current City of Lethbridge Transportation Detailed Engineering Standards

A detailed review of the general paving plan has not been completed. The above recommended pavement layer thicknesses generally refer to average values and recognize typical construction variability. As constructed layer thicknesses should satisfy the thickness tolerances identified in the City of Lethbridge Engineering Standards for granular materials and asphalt concrete (or equivalent).

All asphalt paving lifts should be compacted to a minimum of Marshall Design density, as per current City of Lethbridge Transportation Detailed Engineering Standards. Additional recommended guidelines for design and construction of pavement structure are presented in Appendix C of this report.

The pavement design should include provisions for subsurface drainage of the pavement granular layers. For urban sections, one option is to provide subsurface drainage in the form of longitudinal subdrains along the edge of the pavement structure, where viable. Subdrains will provide a means of removing water that infiltrates the pavement structure, either through cracks and vertical details (e.g., face of gutter), or from peripheral surface runoff. The subdrain should consist of a perforated flexible plastic drainpipe (100 mm diameter), complete with filter sock. The drain should be placed along the edge of the pavement

section in a recessed area of the prepared subgrade. Positive outfall of the drains should be provided at catchbasin locations or other stormwater outfalls.

5.8 Concrete Issues

5.8.1 Concrete Type

The water-soluble sulphate content of four representative soil samples recovered from the site (determined in a laboratory) varied between 0.2% and 4.9%. The properties of concrete for foundations in contact with soil or groundwater shall meet the requirements of Canadian Standards Association (CSA) A23.1-09, Table 3 Class S-2 exposure, i.e., water/cementing materials (w/cm) ratio of 0.45, air-entrainment of 4% to 7% (for 14 mm to 20 mm nominal maximum aggregate size), and a minimum specified 56-day compressive strength of 32 MPa.

For this exposure classification, alternatives include the usage of Type HS (sulphate-resistant) Portland cement or blends of cement and supplementary cementing materials conforming to Type MSb and/or Type HSb cements.

Stricter recommendations may be required due to structural or other exposure considerations (A23.1-09, Table 1). Air entrainment should be increased to 5% to 7% for exterior flatwork.

5.8.2 Concrete Surface Works

With respect to surface works concrete (i.e., specifically concrete curbs and sidewalks), the recommendations provided in this report for subgrade preparation, including moisture conditioning and compaction, are intended to provide relative uniformity in the subgrade. The intention of uniformity, with respect to material type and moisture content, is to reduce the risk of differential concrete movements due to soil volume changes as a result of fluctuating moisture content. A gradual increase in soil moisture content over time is likely to occur (due to precipitation, reduced evaporation, and irrigation), and some differential movement and subsequent cracking of concrete surface works should be anticipated, typical for the Lethbridge area.

With respect to providing a layer of granular material beneath surface works concrete, there are both positive and negative consequences. In the positive sense, it must be assumed that the subgrade will be uniformly graded properly such that any moisture gaining access beneath the concrete within the granular layer would be drained away quickly to an area designed to accommodate excess moisture (i.e., roadway weeping tile tied into the storm system). If well drained, the provision of granular material also serves to reduce some differential distortions, when washed materials are used, and has been documented as helping to reduce longitudinal cracking.

On the negative side, if free drainage of the granular layer is not designed, constructed, and maintained, granular materials provide easy access for excess moisture to pond below the concrete, causing swelling of the medium to high plastic subgrade soils and/or consolidation of fill soils. There is also a risk of softening of the adjacent roadway pavement edges.

The risk of differential movement of the subgrade soils and the economic consequence for either option should be given due consideration by the municipal engineer.

5.9 Limit States Design

The design parameters provided in the following sections may be used to calculate the ultimate foundation capacity in each case. For the Limit States Design (LSD) methodology, in order to calculate the factored load capacity, the appropriate soil resistance factors must be applied to each loading condition, as follows.

Factored Capacity = Ultimate Capacity x (Soil Resistance Factors)

The following soil resistance factors must be incorporated into the foundation design. These factors are considered to be in accordance with the 2006 Canadian Foundation Engineering Manual (CFEM), as well as the 2005 National Building Code of Canada.

Item	Soil Resistance Factor
Shallow Foundations	
Bearing resistance	0.5
Passive resistance	0.5
Horizontal resistance (sliding)	0.8
Deep Foundations	· · · ·
Axial load - From semi-empirical analysis	0.4
Axial load - From static loading test results	0.6
Axial load - From dynamic monitoring results [i.e., pile driving analyzer (PDA) testing]	0.5
Uplift - From semi-empirical analysis	0.3
Uplift - From loading test results	0.4
Horizontal passive resistance	0.5

Table 5.9: Soil Resistance Factors

Under LSD methodology, foundations should be designed on the basis of factored Ultimate Limit State (ULS) parameters. In order to determine the applicable working capacity, Serviceability Limit States (SLS) must also be considered. The lower of the factored ULS resistance or the unfactored SLS resistance should be used as the working capacity for foundation design purposes

Further comments are provided in the following sections. Deep foundations refer to drilled CIP concrete piles.

5.10 Shallow Foundations

Shallow foundations, if considered, should be constructed a minimum of 1.4 m below the final design exterior ground surface (frost protection requirement).

At the time of preparation of this report, information about the presence of fill soils on site was only available at the specific borehole locations. For this reason, the final subgrade elevation for footings should be determined in the field by qualified geotechnical personnel. All fill and debris materials (where encountered) must be removed from the building footprint areas to expose native clay subgrade.

The ultimate static bearing pressure for the design of strip and spread footings at these depths may be taken as 250 kPa for native clay and clay till soils, subject to other recommendations in this report. The ultimate static bearing pressure is based on correlation between SPT "N" values. Factoring should be considered as noted in Section 5.9. Footing dimensions should be in accordance with the minimum requirements of the Building Code.

Bearing certification by a geotechnical engineer is recommended to ensure that the shallow foundations are placed on competent native soils. If softer native soils or residual fill soils are encountered at footing level, recommendations may be provided to lower the footing elevations to materials satisfying the design bearing capacity or to widen the footings within softer clay areas. This should be a field determination at the time of bearing observation.

It is recommended that a smooth-edge trimming bucket or grade-all be used for final excavation to the foundation subgrade elevation to minimize disturbance of the founding soils. A 50 mm concrete mudslab should be placed immediately following excavation to protect the bearing surface from weathering.

The anticipated foundation soils are of medium plasticity, and as such, are prone to volume changes (both heave and settlement) with varying moisture content. Therefore, a permanent weeping tile system is also recommended around the outside perimeter of any structures at the foundation elevation to maintain a consistent moisture profile of the founding soils. This will reduce the potential of differential movement (heave or settlement) of the foundations.

Settlement of footings designed and constructed in accordance with the above recommendations should be well within the normally tolerated values of 25 mm total and 15 mm differential at factored loading. If this range of settlement is not tolerable, then a pile foundation system may be considered for the building.

Recommendations for minimum depth of cover for footings are presented in Section 5.16. Further recommendations regarding shallow foundations are given in Appendix C.

5.11 Bored Cast-in-Place Concrete Piles

Bored CIP concrete piles, if considered, should be founded in native clay till and may be designed to resist axial compressive loads on the basis of the ultimate skin friction and end-bearing parameters given below. End-bearing should not be used for small diameter (less than 760 mm base diameter) piles because of the difficulties associated with ensuring a clean base. End-bearing may only be considered in the design of under-reamed or belled piles if facilities are available for adequate cleaning of the pile base.

Straight shaft bored piles should have a minimum diameter of 400 mm plus a minimum length of 6.0 m. The piling designer and/or contractor should take the soil conditions into account during pile design consideration. Under-reaming to form belled piles may be considered for piles with shaft diameters of 400 mm or greater, and where formation of the bell is within competent clay till soils to prevent sloughing of the under-ream.

Static ultimate design parameters for skin friction and end-bearing are as follows:

Depth below Final Grade (m)	Ultimate Skin Friction (kPa)	Ultimate End-bearing (kPa)
0 - 1.5	0	N/A
1.5 - 6.0	40	N/A
Below 6.0	50	650

Table 5.11: Static Ultimate Design Parameters for Skin Friction and End-bearing

A minimum ratio of depth of cover versus the base or bell diameter (D/B) of 2.5 has been assumed to determine the above end-bearing pressure. Should less cover be provided, the bearing pressure would have to be reduced. Minimum bell diameters should be twice the shaft diameter.

The pile design for belled piles may consider end-bearing in addition to shaft friction, as noted above, in order to determine the total ultimate pile capacity. However, the shaft friction should be neglected for a distance of one shaft diameter above the top of the bell, and within the portion of the pile shafts within fill soils.

Casing should be on hand before drilling starts and used, if necessary, to seal off water and/or prevent sloughing of the hole. In the present site conditions, it is anticipated that casing use may be required due to the presence of groundwater. The piling contractor should make his own estimate of casing requirements considering such factors as soil types, construction procedures, and bore diameter.

Additional recommendations are provided in Appendix C.

5.12 Floor Slabs-on-Grade

Construction of floor slabs-on-grade for this project (outside of basements) must consider the surficial clay soils noted within the development area as well as the general engineered fill layers placed during site grading. Construction should consider that the following precautions and construction recommendations are followed.

In native soils areas, following removal of topsoil, the subgrade should be scarified to a minimum depth of 300 mm, and moisture conditioned to a range of optimum to 2% over OMC. Within areas of fill, the exposed subgrade should be scarified for a minimum depth of 600 mm, considering the clay fill soils (not containing deleterious materials) and moisture conditioned as noted above. The minimum compaction in each case should be 98% of SPD. The prepared subgrade should be proof-rolled and any soft or loose pockets detected should be reconditioned as recommended above or over-excavated and replaced with general engineered fill.

A levelling course of clean well-graded crushed gravel, at least 150 mm in compacted thickness, is recommended directly beneath the slabs-on-grade, unless a thicker course is required for structural purposes. The subgrade beneath slabs-on-grade should be protected at all times from moisture or exposure which may cause softening or disturbance of the subgrade soils. This applies during and after the construction period (and before and after replacement of the required general engineered fill). Should the exposed surface become saturated or disturbed, it should be reworked to achieve the above standards.

If the subgrade is properly prepared as noted above, floor slab movements should be limited to less than, approximately, 25 mm. Slabs-on-grade should be separated from bearing members to allow some

differential movement. If this range of differential movement is unacceptable, the owner should consider a structurally supported floor.

Recommended procedures for proof-rolling and backfill materials and further recommendations for slabs-on-grade construction are included in Appendix C.

5.13 Structural Slabs

A structurally supported floor slab with a crawl space beneath may be used if differential movements from a slabs-on-grade system are not tolerable. The crawl space floor should be graded toward a sump to collect water that may enter. The crawl space floor should also be covered with a vapour barrier and concrete. If a concrete floor is selected for the crawl space, bond breaks should be provided at the foundation walls and columns to allow it to move independently of the structure.

It is important that the crawl space be properly insulated and vented according to applicable building codes, as it has been EBA's experience that in some cases, crawl spaces may develop a moisture/humidity problem. The use of a crawl space with any other covering is not recommended for this development.

Alternatively, the slab may be totally structurally supported with no crawl space. However, with this type of structurally supported floor slab system, there is a risk of ground movement relative to the slab. This relative movement can lead to problems if piping and other utilities that are connected to the slab are embedded within the ground beneath the slab. Utilities beneath the structurally supported floor slabs should be protected from differential movement by placing utilities within boxes suspended from the structural slab. In addition, a void form is recommended below the floor slab in order to prevent transfer of uplift pressures due to swelling clay soil.

5.14 Basement Construction

5.14.1 Basement Floor Slabs

Slabs-on-grade construction for basements is considered feasible providing certain precautions are undertaken. All excavations should be carried out remotely using a smooth-mouth bucket or Grade-All at final grade in order to minimize disturbance of the base. Basement floor slabs should be supported by a minimum of 150 mm compacted, clean, free-draining granular material.

In areas where floor slabs bear on a clay subgrade, the clay at this site may swell following completion of the floor slabs. Therefore, some movement should be anticipated. Any light columns in the basement designed to support the main floor should be of the adjustable "telepost" type. If partitions are constructed in the basement, provision must be made so that, if the basement floor slab heaves, the partitions do not raise the main floor. A minimum allowance of 25 mm should be left between the top plates of basement partitions and the floor above them to accommodate heaving of the floor slab. This heaving allowance is less applicable for interior columns founded on spread footings.

The slab subgrade should be sloped to provide positive drainage to the edge of the slab (where the native soils are cohesive). A minimum drainage gradient of 0.5% is recommended.

Slabs-on-grade should be separated from bearing members to allow some differential movement. If differential movement is unacceptable, a structurally supported floor system or crawl space may be considered.

General recommendations regarding floor slab construction are presented in Appendix C.

5.14.2 Below-Grade Walls

All below-grade walls should be designed to resist lateral earth pressures in an "at-rest" condition. This condition assumes a triangular pressure distribution and may be calculated using the following expression:

$$P_o = K_o (\gamma H + Q)$$

Where: P₀ = Lateral earth pressure "at-rest" condition (no wall movement occurs at a given depth).

- K_{o} = Coefficient of earth pressure "at-rest" condition (use 0.5 for cohesive backfill and 0.45 for sand and gravel backfill).
- γ = Bulk unit weight of backfill soil (use 19 or 21 kN/m³ for cohesive or granular backfill, respectively).
- H = Depth below final grade (m).
- Q = Surcharge pressure at ground level (kPa).

It is assumed that drainage is provided for all below-grade walls through the installation of the weeping tile, and hydrostatic pressures will not be a factor in design. An acceptable weeping tile system should consist of a perforated weeping tile wrapped in a geosock or geotextile fabric, in turn surrounded with a minimum of 150 mm thick blanket of washed rock (maximum size 20 mm). The weeping tile should have a minimum 0.5% slope leading to a sump. The preferred method would be to have provision to tie the sump into the storm sewer utility or the property's on site drainage system.

Backfill around concrete walls should not commence before the concrete has reached a minimum two-thirds of its design strength and first floor framing is in place or the walls are laterally braced. Only hand-operated compaction equipment should be employed within 600 mm of the concrete walls. Caution should be used when compacting backfill to avoid high lateral loads caused by excessive compactive effort. A compaction standard of 95% of SPD is recommended. To avoid differential wall pressures, the backfill should be brought up evenly around the walls. A minimum 600 mm thick clay cap should be placed at the ground surface to reduce the infiltration of surface water.

5.15 Foundation Perimeter Drainage Requirements

It is recommended that a weeping tile and sump system be constructed around the outside perimeter of the buildings (at the base of the footings, if selected) to maintain a relatively consistent moisture profile of the subgrade soils. The weeping tile system should comprise a perforated weeping tile, in turn surrounded with a minimum of 150 mm thick blanket of washed rock (maximum size 20 mm) with the granular layer wrapped in non-woven geotextile. The weeping tile should have a minimum 0.5% slope leading to a sump.

5.16 Frost Protection

For protection against frost-action, perimeter footings in heated structures should be extended to such depths as to provide a minimum soil cover of 1.4 m. Isolated or exterior footings in unheated structures should have a minimum soil cover of 2.1 m unless provided with equivalent insulation.

For a deep foundation system, all piles in unheated areas should have full depth steel reinforcement and should be drilled to a minimum depth of 6.0 m. Grade beams spanning concrete piles should have a minimum 100 mm void space on the underside of the grade beam and around the pile caps to reduce the risk of interaction with the underlying soil associated with frost heaving and/or swelling soils.

Pipes buried with less than 2.0 m of soil cover should be protected with insulation to avoid frost effects that might cause damage to or breakage of the pipes. Rigid insulation placed under areas subject to vehicular wheel loadings should be provided with a minimum thickness of 600 mm of compacted granular base.

5.17 Seismic Design

The Site Classification recommended for Seismic Site Response is Classification D, as noted in Table 4.1.8.4.a of NBCC.

6.0 STORMWATER POND DEVELOPMENT

6.I General

The locations of the stormwater management facilities proposed have not been finalized at the time of preparation of this report.

Based on EBA's understanding of a typical stormwater management facility design, a dry pond typically has a base elevation of approximately 2 m to 3 m below final ground surface. A typical wet pond might have a base elevation ranging between 3 m and 5 m below final ground surface. Such facilities are normally constructed as an excavation below ground surface, while above ground berms are generally not common. The facility will provide overland stormwater storage for the area in accordance with municipal regulations.

Once the operational water level elevation of the wet pond is designed, it is recommended that the proposed sideslopes for the pond below normal operating level be no steeper than 3H:1V. Above the normal water level, the sideslopes are recommended to be no steeper than 5H:1V.

In the preparation of the recommendations provided in this report for the geotechnical aspects of design and construction of the facility, EBA reviewed pertinent sections of the "Stormwater Management Guidelines for the Province of Alberta", dated January 1999 and prepared by the Municipal Program Development Branch of Alberta Environmental Protection [known now as Alberta Environment (AENV)]. Detailed recommendations for the design and construction of this facility are provided in subsequent sections.

6.2 Facility Design

As discussed in the previous sections, the subsurface stratigraphy of the site comprises lacustrine clay overlying glacial clay till. Within the stormwater facility footprint, all organic soils must be removed to ensure the pond subgrades bear on the site's clay soils.

It is considered that the clay till soils will most likely comprise the majority of the clay liner and are found naturally below the proposed pond invert. Literature references (geology) for the clay till (Buffalo Lake Till Sheet) confirm that the till is vertically fractured (due to over consolidation during periods of glaciation). The till is also referenced (as confirmed by the site specific drilling program) to contain sand and/or silt lenses or pockets throughout its matrix. These preferential paths for groundwater seepage may or may not be horizontally continuous and it is not possible to quantify potential seepage losses. However, the literature does present a range of permeability (k) for this till sheet between 10E-05 cm/sec and 10E-06 cm/sec. When compared to the field permeability of a reworked clay liner (recommended k=10E-07 cm/sec), the difference in potential water loss may be in the order of one to two magnitudes (10 to 100 times less for a remoulded clay liner).

It should be recognized that, following construction of the wet pond component (within 3 to 5 years), siltation of the pond floor, swelling of the medium plastic clays, and the development of a groundwater mound will greatly affect the estimated annual water losses. Quantifying this loss to a greater extent than that predicted here would require groundwater modeling which was not included in the current project scope.

In consideration of the above-noted factors, the use of the clay till soils in their native state is not recommended because of the potential loss of containment through the fissured till structure and possible silty or sandy pockets within the clay till, which may provide preferential seepage paths. For this development, it is recommended that the native, cohesive clay till soils be reworked into a low permeable, compacted clay liner to provide the required containment (for wet ponds). With this option, some loss of containment is still possible (as with any earth retention structure). However, the recommendations presented herein are intended to limit seepage losses to an acceptable level, consistent with current industry standards.

Alternate liner types, such as synthetics, are not addressed in this evaluation. They may provide additional protection against leakage but are substantially more expensive.

The use of the native clay till materials encountered on this site for construction of a remoulded clay liner for the pond is considered feasible, provided certain precautions are undertaken, as recommended in the following sections. The results from the field program indicate that perched groundwater levels may be within the proposed wet pond invert, within relatively thin or small saturated sand/silt seams. The use of native lacustrine clay soils for construction of remoulded clay liners should be limited to areas above the high water level (HWL).

It is assumed that above the normal water level, the sideslopes are to be 5H:1V. Below the normal water level, the sideslopes are assumed to be at approximately 3H:1V. Assuming the embankment between the normal water level and HWL is constructed with an engineered clay liner (as recommended in this report), the potential for erosion from wave action should be considered. Slope protection comprising rip-rap designed for potential wave erosion or other means should be given consideration. The use of a filter fabric

median between the native soils and rip-rap is also recommended. Design recommendations for this type of protection are beyond the scope of this report.

For the assessment of clay liner suitability, one laboratory constant head permeability test was conducted on a remoulded sample of the native clay soils. The laboratory test was conducted on composite clay till samples retrieved from between 1.5 m to 3.0 m below ground level (to model that excavated from within the pond footprint and proposed for use as a clay liner). The sample was compacted to approximately 98% of SPD at approximately the OMC for the soil sample (Appendix D). The measured steady state permeability (k) was 1.29E-09 cm/sec. Therefore, the design field liner permeability assumed for the remoulded clay till soil is 1.29E-08 cm/sec. (one order of magnitude larger than the laboratory k). Prior to final design and construction of the proposed facility, additional permeability testing on site soil samples taken from the proposed excavation of the facility or borrow source should be conducted to verify the site specific permeability coefficient.

Based upon the site soil conditions and the above-noted permeability value, it is recommended that a preliminary thickness for the remoulded clay liner be 0.6 m along the base of the wet pond and 1.0 m along the sidewalls up to design operation water elevation (minimum recommended).

A liner thickness of 0.3 m may be given consideration for base liners in other areas of the proposed developed (dry pond), which will only occasionally be below water. This thickness accounts for the potential of desiccation of the upper 0.2 m during the initial periods when the dry pond is empty. It also accounts for potential disturbance during storm events and to facilitate access during periods of maintenance. Thirdly, it is intended as an additional level of protection, to reduce the long term infiltration of groundwater and soil saturation below the dry pond, as a means of maintaining long-term stability of the adjacent slopes.

The following discussions and recommendations pertain to the pond construction, including the construction of a low permeability compacted clay liner.

6.3 **Pond Construction**

6.3.1 General Base Preparation

Following stripping of any organic materials within the development area, the containment basin area should be over-excavated beneath the proposed invert elevation in order to allow sufficient thickness of compacted clay base liner. The clay till soil within the base of the excavation should then be scarified to a minimum depth of 300 mm, moisture conditioned to between -1% and +2% of OMC, and recompacted to a minimum of 98% of SPD. The prepared subgrade thickness may be taken into account in the design liner thickness.

The basin sidewalls in the cut areas (up to HWL) should also be over-excavated a sufficient amount to allow the construction of a compacted clay liner with the exposed subgrade scarified, moisture conditioned, and compacted as noted above.

Monitoring of excavated soils within the pond footprint is recommended so that unsuitable materials, such as low plastic silts or cohesionless sands, are incorporated only in general landscape areas (above HWL) where low permeability is not a requirement.

The composition and consistencies of the soils encountered on the property are such that conventional hydraulic excavators should be able to remove these materials. Cobbles and boulders may be present within the clay till matrix, albeit infrequently. General recommendations regarding backfill materials and compaction as well as construction excavations are given in Appendix C.

Full-time monitoring is recommended by suitably qualified persons, independent of the Contractor. One of the purposes of providing an adequate level of monitoring is to check that recommendations, based on data obtained at discrete borehole locations, are relevant to other areas of the site.

6.3.2 Remoulded Clay Liner

The following recommendations for the construction of remoulded clay liners are based on compliance with AENV's publication, "Stormwater Management Guidelines for the Province of Alberta", dated January 1999. This publication does not specifically provide permeability recommendations for wet ponds; however, it does provide a guideline in Figure 6.10, Wet Detention Pond Plan Sections, for suitable subgrade to prevent infiltration below permanent depth (Max = 1.2 m/Min = 0.6 m).

Recommendations for the pond base and sidewall preparation have been provided in the previous section. The plan dimensions of the excavation should exceed the final "toe-to-toe" interior basin dimensions to provide an overlap between the pond floor liner, and berm or sideslope liner. The subgrade should be relatively level and proof-rolled to provide a good base for compacting the first liner lift to the specified density. Soft pockets that would prevent sufficient compaction of the liner must be over-excavated and replaced with compacted cohesive clay fill materials. In lieu of satisfying the compaction requirements, a geotextile fabric (such as Armtec 200) may be required on or about the elevation of any encountered soft subgrade, although this is not anticipated for the current site conditions.

Careful site observation and testing will be required to avoid incorporating low or non-plastic materials into the liner. It is recommended that materials with a Liquid Limit of less than 30% not be incorporated into the liner. However, low plastic clays, silt or sands not meeting liner requirements, may be used in the top areas of the embankments above HWL or outside the liner zones.

Based on the results of the field program, moisture conditioning of the clay liner materials will be required during liner construction. Appropriate methods of moisture conditioning should be reviewed with qualified construction personnel prior to final design of the liner.

Subsequent to the preparation of the pond floor, the excavated clay soils (liner borrow material) should be moisture conditioned to between -1% and +2% of OMC. Each lift should then be compacted to a minimum of 98% of SPD in lifts of maximum 150 mm compacted thickness to a total placed liner thickness of 0.6 m for the base, as recommended above.

A maximum "clod" size of 100 mm during moisture conditioning (prior to compaction) will produce relatively uniform moisture content throughout the soil matrix and a relatively homogenous compacted soil structure. The size of the "clods" can be controlled with agricultural equipment such as a disk. As far as practical, the liner should be built up in a uniform fashion over the containment basin area, in order to avoid sections of "butted fill" where seepage paths may develop. Compaction should be carried out utilizing "kneading" type compaction equipment such as vibratory padfoot or sheepsfoot type compactors. Completed liner areas should have the surface smoothed by a vibratory smooth drum roller.

Sideslope liners in "cut" areas should have a minimum thickness (perpendicular to the slope face) of 1.0 m, as noted. The cohesive materials for the sideslope liners should be moisture conditioned and compacted as indicated above for the pond bottom.

If a lift of liner soil is allowed to become dry and desiccated prior to the placement of the next lift, the exposed surface should be scarified, remoisture conditioned, and recompacted. Prior to pond filling and during maintenance periods when the pond is empty, the pond bottom should be prevented from drying out beyond 0.2 m as accounted for in the design liner thickness.

7.0 **DESIGN AND CONSTRUCTION GUIDELINES**

Recommended general design and construction guidelines are provided in Appendix C, under the following headings:

- Shallow Foundations
- Floor Slabs-on-Grade
- Construction Excavations
- Backfill Materials and Compaction
- Bored Cast-in-Place Concrete Piles
- Proof-rolling

These guidelines are intended to present standards of good practice. Although supplemental to the main text of this report, they should be interpreted as part of the report. Design recommendations presented herein are based on the premise that these guidelines will be followed. The design and construction guidelines are not intended to represent detailed specifications for the works although they may prove useful in the preparation of such specifications. In the event of any discrepancy between the main text of this report and Appendix C, the main text should govern.

8.0 **REVIEW OF DESIGN AND CONSTRUCTION**

EBA should be given the opportunity to review details of the design and specifications, related to geotechnical aspects of this project, prior to construction.

Bearing surfaces, foundation installation, and deep excavations should be monitored by qualified geotechnical personnel during construction. EBA should be retained to provide these services. A detailed, site specific geotechnical evaluation is recommended for large structures (e.g., multi-family residences, institutional, and commercial developments).

9.0 **LIMITATIONS**

Recommendations presented herein are based on a geotechnical evaluation of the findings in twenty-five geotechnical boreholes and a review of historical aerial photographs, mine records, and other existing information. The conditions encountered during the fieldwork are considered to be reasonably representative of the site. If, however, conditions other than those reported are noted during subsequent phases of the project, EBA should be notified and given the opportunity to review our current recommendations in light of new findings. Recommendations presented herein may not be valid if an adequate level of monitoring is not provided during construction.

10.0 CLOSURE

We trust this report satisfies your present requirements. We would be pleased to provide further information that may be needed during the design and to advise on the geotechnical aspects of specifications for inclusion in contract documents. Should you require additional information or monitoring services, please contact the undersigned at your convenience.

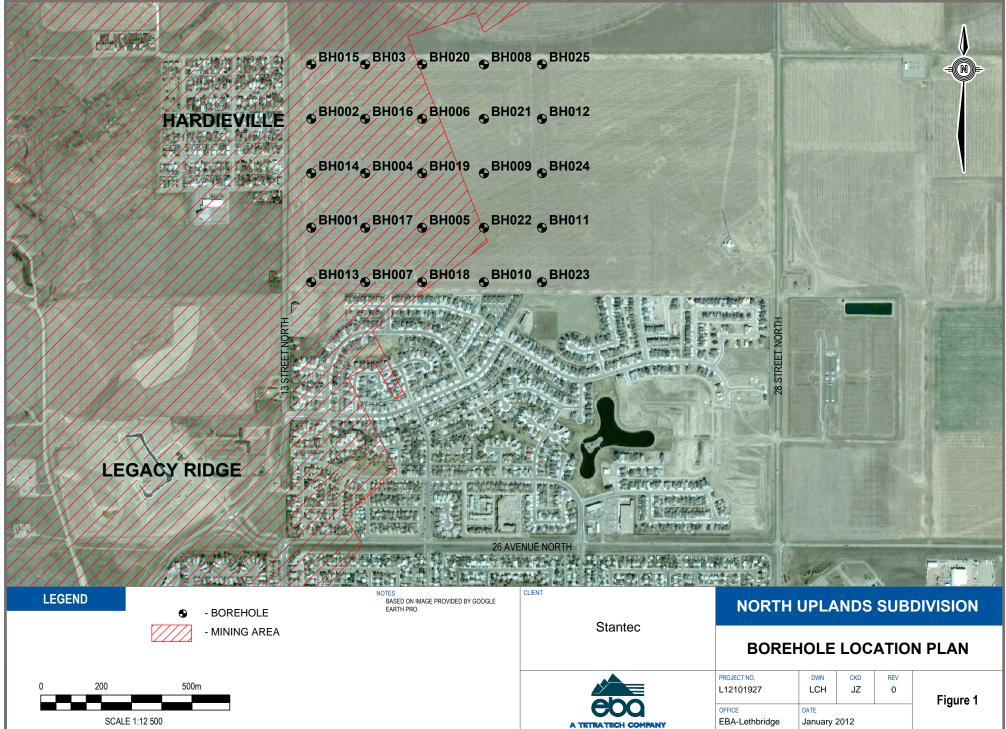
Sincerely, EBA Engineering Consultants Ltd.

Jiejun Zhao, E.I.T. Project Engineer Engineering Practice Direct Line: 403.329.9009 x238 jzhao@eba.ca

/tlp

J. A. (Jim) Ryan, M.Eng., P.Eng. Senior Project Engineer Engineering Practice Direct Line: 403.203.3305 x871 jryan@eba.ca

P	ERMIT TO PRACTICE
EBA EN	GINEERING CONSULTANTS LTD.
Signatur	Monthian
Dete	Janua 18, 2012
PE	RMIT NUMBER: P245
	sociation of Professional Engineers,
Geolo	gists and Geophysicists of Alberta


EBA FILE: L12101928 | JANUARY 2012 | ISSUED FOR USE

FIGURES

Figure I Site Plan and Borehole Locations

C:\Users\leanne.hughes\Documents\L12101928\L12101928_FIG1_R0.dwg [FIGURE 1] January 16, 2012 - 9:10:57 am (BY: HUGHES, LEANNE)

EBA FILE: L12101928 | JANUARY 2012 | ISSUED FOR USE

APPENDIX A GEOTECHNICAL REPORT – GENERAL CONDITIONS

GENERAL CONDITIONS

GEOTECHNICAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This geotechnical report pertains to a specific site, a specific development and a specific scope of work. It is not applicable to any other sites nor should it be relied upon for types of development other than that to which it refers. Any variation from the site or development would necessitate a supplementary geotechnical assessment.

This report and the recommendations contained in it are intended for the sole use of EBA's Client. EBA does not accept any responsibility for the accuracy of any of the data, the analyses or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's Client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. EBA's instruments of professional service will be used only and exactly as submitted by EBA.

Electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, EBA has not been retained to investigate, address or consider and has not investigated, addressed or considered any environmental or regulatory issues associated with development on the subject site.

4.0 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. EBA does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

5.0 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

6.0 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. EBA does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.

7.0 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

8.0 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

9.0 INFLUENCE OF CONSTRUCTION ACTIVITY

There is a direct correlation between construction activity and structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques are known.

10.0 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, as well as the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

11.0 DRAINAGE SYSTEMS

Where temporary or permanent drainage systems are installed within or around a structure, the systems which will be installed must protect the structure from loss of ground due to internal erosion and must be designed so as to assure continued performance of the drains. Specific design detail of such systems should be developed or reviewed by the geotechnical engineer. Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function.

12.0 BEARING CAPACITY

Design bearing capacities, loads and allowable stresses quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition assumed. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions assumed in this report in fact exist at the site.

13.0 SAMPLES

EBA will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

14.0 INFORMATION PROVIDED TO EBA BY OTHERS

During the performance of the work and the preparation of the report, EBA may rely on information provided by persons other than the Client. While EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

EBA FILE: L12101928 | JANUARY 2012 | ISSUED FOR USE

APPENDIX B APPENDIX B BOREHOLE LOGS

TERMS USED ON BOREHOLE LOGS

TERMS DESCRIBING CONSISTENCY OR CONDITION

COARSE GRAINED SOILS (major portion retained on 0.075mm sieve): Includes (1) clean gravels and sands, and (2) silty or clayey gravels and sands. Condition is rated according to relative density, as inferred from laboratory or in situ tests.

DESCRIPTIVE TERM	RELATIVE DENSITY	N (blows per 0.3m)
Very Loose	0 TO 20%	0 to 4
Loose	20 TO 40%	4 to 10
Compact	40 TO 75%	10 to 30
Dense	75 TO 90%	30 to 50
Very Dense	90 TO 100%	greater than 50

The number of blows, N, on a 51mm O.D. split spoon sampler of a 63.5kg weight falling 0.76m, required to drive the sampler a distance of 0.3m from 0.15m to 0.45m.

FINE GRAINED SOILS (major portion passing 0.075mm sieve): Includes (1) inorganic and organic silts and clays, (2) gravelly, sandy, or silty clays, and (3) clayey silts. Consistency is rated according to shearing strength, as estimated from laboratory or in situ tests.

DESCRIPTIVE TERM

UNCONFINED COMPRESSIVE STRENGTH (KPA)

Very Soft Soft Firm Stiff Very Stiff Hard Less than 25 25 to 50 50 to 100 100 to 200 200 to 400 Greater than 400

NOTE: Slickensided and fissured clays may have lower unconfined compressive strengths than shown above, because of planes of weakness or cracks in the soil.

GENERAL DESCRIPTIVE TERMS

Slickensided - having inclined planes of weakness that are slick and glossy in appearance.

Fissured - containing shrinkage cracks, frequently filled with fine sand or silt; usually more or less vertical.

Laminated - composed of thin layers of varying colour and texture.

Interbedded - composed of alternate layers of different soil types.

Calcareous - containing appreciable quantities of calcium carbonate.;

Well graded - having wide range in grain sizes and substantial amounts of intermediate particle sizes.

Poorly graded - predominantly of one grain size, or having a range of sizes with some intermediate size missing.

Information presented herein is for the sole use of EBA's client for this project. EBA is not responsible for, nor can be held liable, for use made of this Field Report by any other party, with or without the knowledge of EBA. The contents of this Field Report incorporate and are subject to EBA's report for this project and it's General Conditions, a copy of which are included in the engineering report and can be provided upon request.

MODIFIED UNIFIED SOIL CLASSIFICATION

MAJ	OR DIVI	SION	1	GRC SYM			TYPICAL DESCRIPTION		LABORATORY CLASSIFICATION CRITERIA		ORATORY CLASSIFICATION CRITERIA			
	action eve	retained on 4.75 mm sieve GRAVELS CLEAN WITH GRAVELS		GV	V	Well-g sand	graded gravels and g mixtures, little or no	gravel- fines		tion	slodmys	$\begin{array}{ll} C_{\rm u} = {\sf D}_{\rm so}/{\sf D}_{\rm 10} & {\sf Greater than 4} \\ C_{\rm c} = \frac{({\sf D}_{\rm 30})^2}{{\sf D}_{\rm 10} x {\sf D}_{\rm 60}} & {\sf Between 1 and 3} \end{array}$		
	GRAVELS pre of coarse fra on 4.75 mm si			CL GRA		GI	5		y graded gravels and mixtures, little or no			e CI	nse	Not meeting both criteria for GW
ILS µm sieve*	GRA or more of ained on 4			GI	И		gravels, I-sand-silt mixtures		ge of fines	GW, GP, GM, GC, Borderlin		Atterberg limits plot below "A" line or plasticity index less than 4 borderline		
AINED SO ned on 75	50% -	GRA	FIN	G	C		ey gravels, I-sand-clay mixtures		of percentage			Atterberg limits plot above "A" line classifications requiring use of dual symbols		
COARSE-GRAINED SOILS More than 50% retained on 75 µm sieve*	'se sieve	CLEAN	NDS	SV	V		graded sands and gr s, little or no fines	avelly	Classification on basis of	μm sieve 5 μm sieve 1 sieve		$C_{u} = D_{e0}/D_{10} \qquad \text{Greater than 6}$ $C_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{e0}} \qquad \text{Between 1 and 3}$		
CO , More than	VDS 0% of coar 4.75 mm	CLE	SAN	SF	D		y graded sands and s, little or no fines	gravelly	Classificat	Less than 5% Pass 75 μm sieve More than 12% Pass 75 μm sieve 5% to 12% Pass 75 μm sieve	N	Not meeting both criteria for SW		
	SANDS More than 50% of coarse fraction passes 4.75 mm sieve	SANDS WITH	NES	SI	Л	Silty s	sands, sand-silt mixt	ures		Less than More than 5% to 12%		Atterberg limits plot below "A" line or plasticity index less than 4 borderline		
	fract	SA	FIN	S	C	Claye	ey sands, sand-clay r	mixtures			Atterberg limits plot above "A" line or plasticity index greater than 7			
	SILTS	Liquid limit	<50	М	ML Inorganic silts, very fine sands, rock flour, silty or clayey fine sands of slight plasticity			For	classific	ation	of fine-grained soils and fine fraction of coarse-grained soils. PLASTICITY CHART			
avior) eve*	IIS	Liqui	>50	M	Н	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts		6		Soils passing 425 µm				
FINE-GRAINED SOILS (by behavior) 50% or more passes 75 μm sieve*	CLAYS Above "A" line on plasticity chart negligible organic content	t	<30	C	L	grave	anic clays of low plas Ily clays, sandy clays lays, lean clays		5 X D X	Equat	on of "A	'A" line: P I = 0.73 (LL - 20) CH		
ED SOILS	CLAYS A" line on p igible organ	Liquid limit	30-50	с	I		anic clays of medium city, silty clays	ı		0				
-GRAINE % or mor			>50	CI	4		organic clays of high asticity, fat clays			20 10		CI MH or OH		
FINE 50°	IIC SILTS CLAYS	Liquid limit	<50	0	L		nic silts and organic v plasticity	silty clays	7 4 C	, 	CL-	-MASSIN ML or OL 20 30 40 50 60 70 80 90 100		
	ORGANIC SILT	Liqu	>50	OI	Н		nic clays of medium h plasticity					LIQUID LIMIT		
HIGHLY	ORGANI	c so	ILS	P	Г	Peat soils	and other highly orga	anic	Re	ference	: AST	material passing the 75 mm sieve TM Designation D2487, for identification procedure SC as modified by PFRA		
					SOIL	СОМРО	NENTS					OVERSIZE MATERIAL		
FR/	ACTION	SIEVE SIZE		PERCENTAGE	DEFINING RANGES OF PERCENTAGE BY MASS OF MINOR COMPONENTS			Rounded or subrounded COBBLES 75 mm to 300 mm						
			PA	SSING	RETA	INED	PERCENTAGE	DESCR	PTO	R				
GRAVI			19 m 4.75		>35 %	"and	1"			ot rounded OCK FRAGMENTS >75 mm				
SANI	-						21 to 35 %	"y-adjeo				OCKS > 0.76 cubic metre in volume		
	coarse medium fine		2.	.75 mm .00 mm .25 μm	2.00 425 75	μm	10 to 20 % >0 to 10 %	"som "trac						
or	(non plast ((plastic)	ic)		75	μm		as abo by ber					A TETRATECH COMPANY		

ROCK DESCRIPTION TERMS USED ON BOREHOLE LOGS

MECHANICAL STRENGTH CALCULATIONS			
TERM	UCS* (MPa)	GRADE	FIELD IDENTIFICATION**
Extremely Strong	> 250	R6	Specimen can only be chipped with geological hammer
Very Strong	100 - 250	R5	Specimen requires many blows of geological hammer to fracture
Strong	50 - 100	R4	Specimen requires more than one blow of geological hammer to fracture
Medium Strong	25 - 50	R3	Cannot be scraped or peeled with pocket knife; can be fractured with single firm blow of geologic hammer
Weak	5 - 25	R2	Can be peeled by pocket knife with difficulty; shallow indentation made by firm blow with geological hammer
Very Weak	1 - 5	R1	Crumbles under firm blow with point of geological hammer; can be peeled by a pocket knife
Extremely Weak	0.25 - 1	R0	Indented by thumbnail
*UCS - unconfined cor	npressive strength;	**Correlatior	ns determined by Field Identification are approximate.

GRAIN SIZE					
NON-CARBONATE DETRITAL SEDIMENTARY ROCKS		OTHER ROCKS	GRAIN SIZE		
Conglome	rate or Breccia	Very Coarse Grained	More than 80 mm		
Conglomerate or Breccia		Coarse Grained	4 to 80 mm		
San	dstone ¹	Medium Grained	80 µm to 4 mm		
FISSILE	NON-FISSILE				
Silt Shale	Siltstone	Fine Grained	> 2/3 silt-sized (2 to 80 µm)		
Mud Shale Mudstone		Fine Grained	Silt and clay-sized (<80 µm)		
Clay Shale Claystone		Very Fine Grained	> 2/3 clay-sized (<2 µm)		

¹ Sandstone further subdivided where appropriate into fine, medium, coarse

DISCONTINUITY SPACING					
BEDDING	OTHER DISCONTINUITY	SPACING			
Very Thickly Bedded	Very Widely Spaced	More than 2 m			
Thickly Bedded	Widely Spaced	600 mm to 2 m			
Medium Bedded	Moderately Widely Spaced	200 to 600 mm			
Thinly Bedded	Closely Spaced	60 to 200 mm			
Very Thinly Bedded	Very Closely Spaced	20 to 60 mm			
Laminated	Extremely Closely Spaced	6 to 20 mm			
Thinly Laminated	Extremely Closely Spaced	2 to 6 mm			
Fissile	Extremely Closely Spaced	Less than 2 mm			

ROCK QUALITY						
TERM	RQD					
Very Poor Quality	0 to 25					
Poor Quality	25 to 50					
Fair Quality	50 to 75					
Good Quality	75 to 90					
Excellent Quality	90 to 100					

WEATHERED STATE					
TERM	DEGREE				
Fresh	No visible signs of weathering				
Slightly Weathered	Weathering only on open discontinuity surfaces				
Moderately Weathered	Rock mass weathered but not friable				
Highly Weathered	Rock mass weathered and partly friable				
Completely Weathered	Wholly decomposed but texture and structure preserved				
Residual Soil	Original rock texture and structure destroyed				

CORE RECOVERY									
TERM	DESCRIPTION								
Total Core Recovery	Total recovery expressed as a percentage of run length								
Solid Recovery	Solid recovery expressed as a percentage of run length								
Rock Quality Designation (RQD)	Sum of lengths of solid core more than 100 mm long expressed as a percentage of run length								
Fracture Frequency (FF)	The number of fractures per metre of core (FF's in excess of 30 denoted at 30+)								

PROJ	ECT: LANDS NORTH OF UPLANDS		NSULT	ING LTD			PROJECT NO BOREHOLE NO.							
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	ILL METHOD: 150mm SOLID STEM AUGER								L12101928 - 11BH001				
CITY:	LETHBRIDGE, AB	JECT ENGINEER: JIEJUN ZHAO ELEVATION: 912.						2.84m						
SAMP	PLE TYPE DISTURBED 🗌 NO RECO	OVERY	SPT A-CASING SHELBY TUBE CORE							RE				
BACK	FILL TYPE 🗾 BENTONITE 📝 PEA GRA	VEL	SLO				ROUT		DRILL (CUTTINGS	🔅 SA	ND		
			ш	SAMPLE NUMBER		MOISTURE CONTENT								
(E	SOIL		SAMPLE TYPE	UME	Î	ONT						NETRATION (N)	Elevation (m)	
Depth (m)	DESCRIPTION		Щ	Е	SPT (N)	RC				20	40 NCONFI	60 80 NED (kPa) ◆	atior	
Del	DESCRIPTION		MP	1PLI	ц Р	STUF	PLASTIC	M.C.	LIQUID	50	100	150 200	leva	
			Ś	SAN		MOIS	20	40 60		▲ P0 100		PEN. (kPa) ▲ 300 400	ш	
= 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots												=	
E	CLAY - silty, some sand, moist, stiff, medium plastic, brown, white precipitates	brown grey												
Ē	soluble sulphate content = 0.2% @ 0.6m		_	I B1		19.4	•						912.0	
	CLAY (TILL) - silty, some sand, trace gravel, moist, ve medium plastic, ligth brown with dark brown mo	ery stiff, ttling_coal											-	
Ē	and oxide specks, thin sand lenses	anig, ooa		B2		13.7	•	-					-	
Ē	white precipitates		∇	D1	15				······································					
E_ 2	damp, sand pockets to 30mm		\square	B3		9							911.0	
Ē	occasional high plastic clay inclusions			50		9							_	
-	very stiff			B4		12.2		·	÷					
- - 3													910.0	
		∇	D2	18				0						
E I			\square	02										
	sand pockets to 150mm			B5								A	909.0_	
_ 4	moist, stiff, silt lenses											· · · · · · · · · · · · · · · · · · ·	-	
				B6		16.2	•							
-														
E_ 5,⊈	some sand to sandy, low to medium plastic, brown brown	to dark	Х	D3	12								<u>8.0_</u>	
11/21/1 <mark>6</mark>	oxide staining, weathered			B7						▲			11/21/11	
11				B8		16.6	•							
E_ 6													907.0_	
	brown with grey brown mottling free water												=	
E				D4	8									
	sand pockets to 300mm			B9									906.0	
- 7														
				B10		19							-	
-				_										
E 8			\square	D5	15								905.0	
	moist, very stiff, light brown with dark brown mottlin	g		I B11								A		
-				B12		16.5	•		· · · · · ·		• • • • • • •	A		
E 9												904.0		
Ē				,									=	
			Х	D6	21									
E	End of Borehole @ 9.6m			1									903.0	
<u>-</u> 10	Seepage and Sloughing from 6.0m on Completion Slotted PVC Pipe Installed to 9.6m													
E	Indicated Water Level Measured November 21, 2011											-		
E	2011											No. No. <td>902.0_</td>	902.0_	
E 11													302.0_	
E														
- 11.5						OGGF	D BY: JK	(M		COMP		N DEPTH: 9.6	i – – – – Sm	
	🖥 EBA Engineering Col	td.	REVIEV	VED BY:	TC		COMPLETE: 10/28/2011							
~		Γ	DRAWING NO: B1 Page 1 of 1											

GEOTECHNICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ EBA.GDT 1/11/12

PROJ	IECT: LANDS NORTH OF UPLANDS	CLIENT		NSULT	ING LTD.	PROJECT NO BOREHOLE NO.						
LOCATION: NW 1/4 SEC 17-9-21 W4M DRILL M					150mr	n SOL	ID STEM AUGER	L12101928 - 11BH002				
CITY:	LETHBRIDGE, AB	OJECT ENGINEER: JIEJUN ZHAO ELEVATION: 912.59m										
SAMP	PLE TYPE 📃 DISTURBED 🗌 N	O RECOVERY	SPT A-CASING SHELBY TUBE CORE									
BACK	(FILL TYPE 🔛 BENTONITE 🛛 📝 P	EA GRAVEL	SLO	UGH		G	Rout 🛛 🕅 Drill	CUTTINGS 🔅 S	AND			
			ш	ER		INT						
Ê	0.011		SAMPLE TYPE	SAMPLE NUMBER	,	MOISTURE CONTENT		STANDARD P	ENETRATION (N)	Elevation (m)		
Depth (m)	SOIL		Щ	Z	SPT (N)	ЦСС		20 40	60 80	tion		
Dep	DESCRIPTIC	N	MPI	Ч	Ъ	TUR	PLASTIC M.C. LIQUI		FINED (kPa) ◆ 150 200	eva		
			SA	AM		IOIS		▲ POCKET	PEN. (kPa) ▲			
- 0	TOPSOIL - clay, silty, sandy, damp, dark brow	vn, roots, organics	7	S		2	20 40 60 80	100 200	300 400			
	CLAY - silty, some sand, moist, stiff, medium									-		
Ē	brown white precipitates			B1		17.8		E E E A E		912.0		
E 1	thin silt lenses											
E	CLAY (TILL) - silty, some sand, trace gravel,	damp, stiff, medium		B2		9.6	•					
E_	plastic, light brown with dark brown mot	tling		,						911.0_		
Ē	some sand to sandy, low to medium plastic some sand, medium plastic, oxide staining		X	D1	15					-		
<u></u> 2	occasional sand pockets to 50mm			B3		11			· · · · · · · · · · · · · · · · · · ·			
E	trace sand, moist, high plastic, high plastic	clay inclusions,										
-	occasional silt pockets			B4		30.8	••••••	• • • • • • • • • • • • • • • • • • • •	•	910.0		
<u> </u>												
Ē			∇	D2	16							
E	damp to moist, some sand, medium plastic		\square		10							
-				B5						909.0		
E 4	occasional sand pockets to 25mm											
Ē				B6		12.3						
-				DU		12.5				908.0_		
È _			\mathbb{N}	D3	18					-		
5			\square	B7						-		
E												
Ē	moist, stiff			B8		15.2	•			907.0		
E 6												
E_ 6					10			· · · · · · · · · · · · · · · · · · ·				
E_			\triangle	D4	16					906.0_		
Ē				B9						-		
	,											
11/21/14				B10		16.5	•			11- 1-		
11/21									- 2	90 <u>€</u> 0		
8 11/2	trace free water		X	D5	15							
	trace free water stiff to very stiff			B11								
				1010		15.4				904.0		
E			B12		10.4							
- 9										_		
Ē				D6	19							
-			\square		10					903.0_		
	End of Borehole @ 9.6m No Seepage or Sloughing on Completion		-									
E 10 E	Slotted PVC Pipe Installed to 9.6m									-		
¢	Indicated Water Level Measured November 2 2011	21,										
F	2011									902.0		
E 11												
E												
- 11.5	5				L							
	EBA Engineering	Consulta	ŧ⊿╠		ED BY: JKM WED BY: TC		COMPLETION DEPTH: 9.6m					
ebo		Consulta			NG NO: B2	Page 1 of 1	COMPLETE: 10/28/2011					
GEOTECHI	INICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTE	CHNICAL.GPJ EBA.GDT 1/11		/1 \/~\ \/	NO NO. DZ							

PROJ	ECT: LANDS NORTH OF UPLANDS	C CO	ISULT	ING LTD.	PROJECT NO BOREHOLE NO.								
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	RILL METHOD: 150mm SOLID STEM AUGER						L12101928 - 11BH003					
CITY:	LETHBRIDGE, AB	PROJECT ENGINEER: JIEJUN ZHAO						ELEVATION: 912.31m					
SAMF	PLE TYPE 📃 DISTURBED 🗌 NO RECOVE	RY 🔀	SPT A-CASING SHELBY TUBE CO						CORE				
BACK	FILL TYPE 📃 BENTONITE 🛛 🚺 PEA GRAVEI	L []] :	SLOL			G	Rout 📉 drill	L CUTTINGS 👯	SAND				
			ш	SAMPLE NUMBER		ENT							
(Ê	SOIL		TYPE	ML	Î	MOISTURE CONTENT			PENETRATION (N)	Elevation (m)			
Depth (m)			Щ	Ы	SPT (N)	RC		20 4 ◆ UNCO	0 60 80 NFINED (kPa) ◆	atior			
De	DESCRIPTION		SAMPLE	IPL	S	STUF	PLASTIC M.C. LIQUI	D 50 10	0 150 200	lex			
			Ś	SAN		MOI	20 40 60 80		ET PEN. (kPa) ▲ 00 300 400				
= 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, or									912.0			
E_	CLAY - silty, trace to some sand, damp to moist, very stiff to high plastic, light brown with dark brown mottling	r, meaium , white											
F.	precipitates		_	B1		12.8							
<u>-</u> 1 -	CLAY (TILL) - silty, some sand, trace gravel, damp to mo stiff, medium plastic, light brown with dark brown m	ist, very ottling,		_						-			
Ę	coal and oxide specks, thin sand lenses soluble sulphate content = 0.2% @ 1.2m			B2		9.5				911.0			
E	heavy white precipitates		\mathbb{N}	D1	19					-			
2		aina	\square	B3		12.9				-			
E	some sand to sandy, low to medium plastic, oxide stair weathered	iirig,								910.0_			
F				B4		12	••••						
E_ 3													
Ē	some sand, medium plastic		\square	D2	28					909.0			
E-	damp to moist, hard, sand pockets to 50mm		А										
E.	damp to moist, nard, sand pockets to somm			B5									
3 3 4 5 6										=			
Ę	brown to grey brown			B6		12.3				908.0			
Ē			\square	50						-			
E 5	maint		Д	D3	33					-			
-	moist light brown with dark brown mottling			B7						907.0			
Ē	some sand to sandy, low to medium plastic			B8		8.4	•						
E 6	200mm gravel pocket @ 5.5m												
E	some sand, medium plastic		\square	D4	33					906.0_			
E-			Д	D4	33					-			
Ė,	very stiff			B9						-			
E 7 E													
<u>E</u>				B10		14				905.0			
E			\square	D5	23					_			
<u> </u>			\square		25								
E				B11						904.0			
Ē				B12		14.2	•		A				
E 9													
Ē			\square	D6	29					903.0_			
-			Д	DO	29								
E_ 10	End of Borehole @ 9.6m No Seepage or Sloughing on Completion		-										
Ē	Slotted PVC Pipe Installed to 9.6m									902.0			
Ē.	Borehole Measured Dry November 21, 2011												
Ē													
<u>-</u> 11										=			
E = 11.5										901.0			
				,	, <u> </u>		D BY: JKM		ION DEPTH: 9.6	m			
éb	🖥 EBA Engineering Cons	sultar	td. F		VED BY: TC		COMPLETE: 10/28/2011						
GEOTECH	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ E	EBA.GDT 1/11/12	[[RAW	NG NO: B3	Page 1 of							

PROJ	ECT: LANDS NORTH OF UPLANDS	CLIEN	C CO	ISULT	ING LTD.	PROJECT NO BOREHOLE NO.				
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	_ METH	IOD:	150mr	n SOLI	ID STEM AUGER	L12101928 - 11BH004			
CITY:	LETHBRIDGE, AB	PROJ	OJECT ENGINEER: JIEJUN ZHAO ELEVATION: 914.16m							
SAMP		RECOVERY	SPT			A-		BY TUBE CORE		
BACK	FILL TYPE 🔛 BENTONITE 🛛 🚺 PE/	GRAVEL	SLOI		-	G	ROUT 🔀 DRILI	CUTTINGS		
			ш	SAMPLE NUMBER		ENT			<u> </u>	
Ê	COIL		SAMPLE TYPE	M	Î	MOISTURE CONTENT		■ STANDARD PENETRATION (N)	Elevation (m)	
Depth (m)	SOIL		Ш	Z	SPT (N)	С Ш		20 40 60 80 ◆ UNCONFINED (kPa) ◆	ation	
Dep	DESCRIPTION		MP	Ы	ц С	STUR	PLASTIC M.C. LIQU	ID 50 100 150 200	leva	
			S	SAN		NOIS	20 40 60 80	▲ POCKET PEN. (kPa) ▲ 100 200 300 400	ш	
= 0	TOPSOIL - clay, silty, sandy, damp, dark browr			0,					914.0	
E_	CLAY - silty, some sand, moist, stiff, medium pl with dark brown mottling, white precipitate	astic, light brown								
E	with dark brown motining, write procipitat			B1		15.8	•		, di	
<u> </u>									913.0	
E				B2		23.8	•			
E	trace to some sandy, medium to high plastic			D1	15				1.1	
E 2					15					
	CLAY (TILL) - silty, some sand, trace gravel, m	vict von ctiff		B3		23.1	•		912.0_	
Ē	medium plastic, light brown with dark brown	vn mottling, coal		B4		14.8	•			
F 1	and oxide specks, high plastic clay inclus trace to some sand, medium to high plastic	ons							. In .	
- 3 -				D 0	40			· · · · · · · · · · · · · · · · · · ·	911.0_	
Ē			Á	D2	19					
Ē				B5					1.1	
E_ 4										
Ē				B6		16.6			910.0	
Ē						10.0				
5				D3	22				111	
Ē	some sand, medium plastic, thin sand lenses	, oxide staining,		B7					909.0_	
5	weathered			B8		13		· · · · · · · · · · · · · · · · · · ·	111	
E				БО		15			, hi	
E_ 6									908.0_	
E				D4	24					
Ē	stiff								li	
<u> </u>				B9						
E				D 40		40			907.0	
<u>-</u>				B10		13				
8	trace to some sand, medium to high plastic, t	hin silt lenses		D5	14				li i l	
- 8 -				B11					906.0	
E	very stiff					40 -				
E	vory sun			B12		16.5			, hi	
9									905.0	
E				D6	28				903.0 <u> </u>	
E	End of Borehole @ 9.6m		$-\mu$							
E_ 10	No Seepage or Sloughing on Completion		_							
E	Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011								904.0	
E	Dorenoie measureu Dry November 21, 2011								-	
Ē.,										
E 11 E									903.0_	
– – 11.5										
)		OGGE	D BY: JKM		COMPLETION DEPTH: 9.6m			
éb	a EBA Engineering (onsult	ants	s Li	ta . F	REVIEV	VED BY: TC	COMPLETE: 10/28/2011		
GEOTECH	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECH	NICAL.GPJ EBA.GDT 1	1/11/12		L	KAWI	NG NO: B4	Page 1 of 1		

PROJ	PROJECT: LANDS NORTH OF UPLANDS CLIENT: STANTEC CO								ING LTD.			PROJECT NO BOREHOLE NO.					
					1ETH	IOD:	150mr	n SOLI	ID STEM		L12101928 - 11BH005						
CITY: LETHBRIDGE, AB PROJECT							JECT ENGINEER: JIEJUN ZHAO ELEVATION: 914.64							1.64m			
SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🔀	SPT A-CASING SHELBY TUBE CORE						DRE						
BACKFILL TYPE BENTONITE 📝 PEA GRAVEL IIII SLOUGH									ROUT		DRILL	CUTTINGS	ःः SA	ND			
					ш	SAMPLE NUMBER		MOISTURE CONTENT									
(E)		SO	н		SAMPLE TYPE	JME	Î	ONT						NETRATIO		Elevation (m)	
Depth (m)					Щ	Ī	SPT (N)	ČE C				20		60 8 NED (kPa)	0	atior	
De		DESCRI	PTION		MP	1PLI	ц.	STUF	PLASTIC	M.C.	LIQUID) 50	100	150 20	00	leva	
			Ś	SAN		MOI	20	40 60	80	10		PEN. (kPa) 300 40		ш			
= 0		, silty, sandy, damp, o			~												
E		ce sand, damp to mo n, thinly laminated	ist, very stiff, mediur	n plastic,												014.0	
	5.7.	, , , , , , , , , , , , , , , , , , , ,				B1		15.2	•				A	· · · ·		914.0	
<u>-</u> 1	white precipit	ates															
		ate content = 4.91%	@ 1.2m			B2		15.2	•				4			-	
-	CLAY (TILL) - s	ilty, some sand, trace	aravel. damp to mo	ist. stiff.	$\neg \nabla$	D1	15) • • (• • • (• • • • • • • • • • • •		913.0_	
E 2	medium p	lastic, light brown wit	h dark brown mottlin	g, coal	\square	B3		11.9								-	
Ē	and oxide	specks, thin sand ler	ises			53		11.9									
-	verv stiff oxid	de staining, weathere	d			B4		12.1		·	·					912.0	
	in roly can, can		-											· · · ·		-	
		∇	D2	26						•••••••••••••••••••••••••••••••••••••••			-				
E I					\square		20										
	occasional co	bal inclusions				B5										911.0	
_ 4														· · · · · · · · · · · · · · · · · · ·			
						B6		13.4	•								
E																910.0_	
E 5	occasional sa	and pockets to 20mm			Х	D3	21						I	· · · ·			
E						B7										-	
-						B8		12.9	•							909.0	
E														· · · ·			
E 6														· · · · · · · · · · · · · · · · · · ·		-	
E					Х	D4	20									=	
E	sand pockets	to 75mm				В9										908.0	
<u> </u>														· · · · · · · · · · · · · · · · · · ·		=	
E						B10		12.9	•								
E	trace to some	e sand, medium to hig	nh nlastic											;;; 		907.0_	
E 8		-			Х	D5	24									-	
E	some sand, s	stiff, medium plastic, t	hin sand lenses			B11								· · · ·		-	
E I						B12		13.4						: 		906.0	
Ê, I																	
E 9	9													· · · · · · · · · · · · · · · · · · ·		-	
-					X	D6	12									=	
E	End of Bo	prehole @ 9.6m														905.0	
E 10																=	
E																	
E	-									• • • • • • • • • • • • • • • • • • • •			•••••••••••••••••••••••••••••••••••••••			904.0	
E 11														· · · ·		-	
<u> </u>							L		עם <u>ס</u>				ט רדיס				
	FRA I	td╠	<u>.UGGE</u> SEV/IE/	D BY: JK	IVI TC		COMPLETION DEPTH: 9.6m COMPLETE: 10/28/2011										
🚓 EBA Engineering Consultants Ltd.								DRAWING NO: B5 Page 1 of 1							, , , ,		

GEOTECHNICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ EBA.GDT 1/11/12

PRO	ECT: LANDS NORTH OF UPLANDS	CLIENT: S	STA	NTE		ISULT	ING LTD			F	PROJE	CT NO.	- BOI	REHOLI	E NO.
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL ME	ETH	OD:	150mr	n SOLI	D STEM	AUGEF	२		L1	21019	28 - 1´	1BH006	
CITY:	LETHBRIDGE, AB	PROJECT	T EN	IGIN	EER:	JIEJUN	I ZHAO			ELI	EVATIC)N: 914	1.66m		
SAMF	PLE TYPE 📃 DISTURBED 🗌 NO RECOVER	२४ 🖂 इ	SPT			A-	CASING		SHELI				ORE		
BACK	(FILL TYPE 🔄 BENTONITE 💽 PEA GRAVEL		SLOU			<u> </u>	ROUT	2		CU7	TTINGS	🔅 SA	ND		
			ш	SAMPLE NUMBER		MOISTURE CONTENT									
Ê	SOIL		SAMPLE TYPE	M	î	ONT								FION (N)	Elevation (m)
Depth (m)	DESCRIPTION		Щ	Z	SPT (N)	ZE C					20 ●U	40 VCONFI	60 NED (k	80 Pa) ♠	atior
De	DESCRIPTION		ÅF	1PL	S	STUF	PLASTIC	M.C.	LIQUI	D	50	100	150	200	
			Ś	SAN		MOI	20	40 6	50 80		▲ P0 100	DCKET I 200	PEN. (K 300	Pa) ▲ 400	
= 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, org														-
	CLAY - silty, trace to some sand, damp to moist, very stiff, to high plastic, light brown, white precipitates	medium													
Ē	occasional high plastic clay inclusions			B1		11.4				-		1 1 4			914.0
<u>-</u> 1	thin sand lenses									•					
Ē	CLAY (TILL) - silty, some sand, trace gravel, moist, very s	tiff,		B2		13.3	•		· · · ·			4			
-	medium plastic, light brown to brown, coal and oxide thin sand lenses, occasional high plastic clay inclusi	e specks, ons	\square	D1	23										913.0_
E_ 2			\square	B3		11		·	: :;;.	: 	· · · · · · · · · · · ·		: : : :;		
Ē									· · · ·						
<u>-</u>				B4		10.7	• • • • • • • • •			•		· [· · · · ·			912.0
E3	some sand to sandy, low to medium plastic									-					=
Ē			\square	D2	26										1 -
<u> </u>			Д												
Ē	sand pockets to 75mm, oxide staining, highly weathered	d		B5											911.0
3 4 5										•					
Ē	stiff			B6		11.3	•								
Ē				_					· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · ·		910.0_
E_ 5			Д	D3	13				· · · · · · · · · · · · · · · · · · ·						
F				B7											
	very stiff, brown			B8		11.9	•						A		909.0_
6													· · · ·		
Ē			\square	/					· · · · · · · · · · · · · · · · · · ·				· · · · · · · · ·		
E_	light brown with dark brown motiling		Å	D4	21										
Ē	light brown with dark brown mottling			B9											908.0
Ē	stiff			B10		12	•								
F			\square		45						_				907.0_
E_ 8			Д	D5	15										
				B11								1 *			
E-	hard			B12		15.1	•	••••							906.0
E 9															
E			\square												
Ē			М	D6	48										905.0_
È "	End of Borehole @ 9.6m														505.0_
9	No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
È.	Borehole Measured Dry November 21, 2011								· · · ·						
E															904.0_
E_ 11															
E F 11.5						· · · ·				· · · ·					
11.0			L	OGGE	D BY: JK	(M		·	COMP	LETIO	N DEF	PTH: 9.6	Sm T		
éb	🖥 EBA Engineering Cons	sultan	its	: Lt	td.F	REVIEV	VED BY: NG NO: E	TC			COMP	LETE:			
	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ E											of 1			

PRO	IECT: LANDS NORTH OF UPLANDS	CLIENT: \$	STA	NTE		NSULT	ING LTD	•		Ρ	ROJE	CT NO	- BO	REHOL	E NO.
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL ME	ETH	OD:	150mr	n SOL	ID STEM	AUGER			L1	21019	28 - 1 ⁻	1BH007	7
CITY:	LETHBRIDGE, AB	PROJEC	T EN	IGIN	EER:	JIEJUN	N ZHAO			ELE	EVATIO	DN: 913	3.58m		
SAMF	PLE TYPE DISTURBED NO RECOVE	RY 🔀 S	SPT			A	-CASING		SHELB				DRE		
BACK	(FILL TYPE 🗾 BENTONITE [📝 PEA GRAVE	L 🛄 S	SLOU				ROUT		DRILL	CUT	TINGS	🔅 SA	ND		
			ш	SAMPLE NUMBER		MOISTURE CONTENT									
Ê	SOIL		SAMPLE TYPE	M	î	ONT					STAN			TION (N)	Elevation (m)
Depth (m)	DESCRIPTION		Щ	Z	SPT (N)	ZE C				_	20	40 NCONFI	60 NFD (k	80 Pa) ♠	atio
De	DESCRIPTION		AMF	JPL	S	STUF	PLASTIC	M.C.	LIQUIE	ן נ	50	100	150	200	
			Ś	SAN		MOI	20	40 60) 80		▲ P0 100	CKET	PEN. (k 300	(Pa) ▲ 400	
= 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, or	rganics													
Ē	CLAY - silty, trace to some sand, moist, very stiff, mediur plastic, brown to grey brown	n to nign													913.0_
	CLAY (THL) with some conditions around moist stiff.	no o diu no		B1		18				:		4			
<u> </u>	CLAY (TILL) - silty, some sand, trace gravel, moist, stiff, plastic, light brown with dark brown mottling, coal a	ind oxide								 					
Ē	specks, thin sand lenses white precipitates			B2		13.6	•								
Ē	high plastic clay inclusions		\square	D1	12										912.0
E 2			\square	B3		14.7				: :			: 		
Ē	very stiff														-
<u>-</u>				B4		18.1	•	•••••••••••••••••••••••••••••••••••••••			••••••••			A	911.0_
E3															
Ē			\square	D2	25										
E_	down to maint ovide staining highly weathered		А												910.0
Ē	damp to moist, oxide staining, highly weathered			B5										A	-
<u> </u>										<u>.</u>					
Ē				B6		11.6	•								
Ē	occasional coal inclusions		\square	_											909.0
E_ 5			М	D3	24							l: :			
3 4 5 6				B7			: : :			:					-
-				B8		11.9	•								908.0_
E 6															
Ē	occasional sand pockets		\square												
Ē.			Å	D4	21					:					907.0_
Ē	he d			В9											-
<u> </u>	hard														
Ē				B10		10.5	•								
Ē			\square												906.0
E_ 8			М	D5	44										
Ē				B11											-
E-				B12		11	•	•••••••••••••••••••••••••••••••••••••••			· · · · · · · ·	• • • • • • •			905.0_
Ē 9													· · · ·		
Ē			\forall												
E-			M	D6 \$	50/200mr	'n							/200		904.0
9	End of Borehole @ 9.6m														
E 10 E	No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m														
Ē.	Borehole Measured Dry November 21, 2011														
E															903.0
E_ 11										: :					
E F 11.5															
11.0	•				L	OGGE	D BY: JK	M.		·	COMP	LETIO	N DEI	PTH: 9.	.6m
éb	🖥 EBA Engineering Cons	sultari	nts	Lt	td.F	REVIEV	NED BY:	ТС			COMP	LETE:			
	INICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL GPJ			RAWI	NG NO: E	37			Page 1	of 1					

PROJ	ECT: LANDS	NORTH OF UPLA	NDS	CLIENT:	STA	NTE	C CON	ISULT	ING LTD			PROJEC	T NO	BOREHOLI	E NO.
LOCA	TION: NW 1/4	4 SEC 17-9-21 W4	Μ	DRILL M	ETH	OD:	150mr	n SOLI	D STEM	AUGER		L12	2101928	3 - 11BH008	
CITY:	LETHBRIDG	E, AB		PROJEC	t ei	NGIN	EER: 、	JIEJUN	I ZHAO		E	LEVATIO	N: 911.1	14m	
SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🔀	SPT			A-	CASING	s s	HELBY	TUBE	COR	E	
BACK	FILL TYPE	BENTONITE	PEA GRAVE	L []]]	SLO	JGH		G	ROUT	D	RILL C	UTTINGS 🖟	🔅 SANI	D	
					ш	ER		ENT							
Ê		00			SAMPLE TYPE	SAMPLE NUMBER	Â	MOISTURE CONTENT				STAND.	ARD PENE	TRATION (N)	Elevation (m)
Depth (m)		SO			Щ	Z	SPT (N)	ЕCC				20		60 80	tion
Dep		DESCR	PTION		MPI	РШ	SP	TUR	PLASTIC	M.C. L	IQUID	50		ED (kPa) ✦ 150 200	eva
					SA	AM		lois		•	-1			N. (kPa) ▲	
- 0	TOPSOIL - d	ay, silty, sandy, damp,	dark brown, roots, or	ganics		S		2	20	40 60	80	100	200 3	300 400	911.0_
E	CLAY - silty,	trace to some sand, mo	pist to very moist, stiff	f, medium											
Ē	to nign precipit	plastic, light brown with ates	h dark brown mottling	, white		B1		22	٠						
E 1		phate content = 0.5% (_										
Ē	CLAY (TILL) light bro	- silty, sandy, trace gra own with dark brown m	vel, moist, stiff, low p ottling, coal and oxide	lastic, e specks.		B2		13.6	IO I						910.0_
E	thin sa	nd lenses, high plastic of	clay inclusions, white	e epeene,											
E ₂ ▼	precipit	ates			М	D1	9								
11/11/12/11						B3		13.5	•						<u>90</u> 90_
11/2						B4		17	•						11/21
Εl															-
<u> </u>	gypsum cr	(ctale													908.0_
F	gypsum cr	/stais			Х	D2	11				: :				-
F	oxide stain	ing, highly weathered													
E 4						B5									-
Ë I	trace free v	vater													907.0_
E	occasional	sand pockets to 25mm	ı			B6		14.4	•						
E					∇	D3	13								
5					\square	B7	10					-			906.0_
Εl						ы									-
<u> </u>						B8		16.9	•						, II
E 6															
ΕI					\bigtriangledown	D4	12								905.0
E	trace to so	me sand, moist, very si	tiff medium to high n	lactic	\square	D4	12								-
Ė,		o grey brown	in, mediam to high p	145110,		B9							-		
											· · : · · : : : : : : : : : : : : : : :				904.0_
-							16.2	•						-	
E I	SAND - silty,	trace clay, poorly grade	ed, medium grained,	wet,	\square	D 2	00								=
<u> </u>	compa	ct, brown high plastic clay inclus	-		\square	D5	29								903.0
Εl	occasional	might plastic clay inclus	6101			B11									
ΕI		oilty troop to some	and trace are all and	at yes:		B12		16.7	•		•••••••••••••••••••••••••••••••••••••••				
E 9	stiff, me	 silty, trace to some sa edium to high plastic, b 	rown with dark brown	n mottling,											
ΕĭΙ		d oxide specks, thin sa													902.0_
ΕI	Inclusio	110			Х	D6	25								. 3
E		Borehole @ 9.6m													
10	No Seepage Slotted PVC	or Sloughing on Comp Pipe Installed to 9.6m	letion												901.0_
Εl	Indicated Wa	iter Level Measured No	ovember 21,												
Εl	2011														
E 11															
ĘΙ															900.0_
- 11.5									עו אים ח	<u>і і і і</u>			ETION		
	FRA	Engineer	ring Cone	sultar	nts	:/:	td╠		<u>D BY: JK</u> VED BY [.]	TC				<u>DEPTH: 9.6</u> 0/28/2011	וות
eod				100			RAWI	NG NO: E	38		Page 1				

GEOTECHNICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ EBA.GDT 1/11/12

PROJ	ECT: LANDS	NORTH OF UPLAN	NDS	CLIENT:	STA	NTE	C CON	ISULT	ING LTD.			PROJE	CT NO.	- BOR	EHOLE	E NO.
LOCA	TION: NW 1/4	SEC 17-9-21 W4N	N	DRILL N	1ETH	IOD:	150mr	n SOLI	ID STEM A	UGER		L1	210192	28 - 11E	BH009	
CITY:	LETHBRIDGE	E, AB		PROJEC	ot ei	NGIN	EER: 、	JIEJUN	N ZHAO			ELEVATIO)N: 916	6.44m		
SAMP	LE TYPE	DISTURBED	NO RECOVE	RY 🔀	SPT			A-	-CASING		SHELB	Y TUBE	CC	DRE		
BACK	FILL TYPE	BENTONITE	PEA GRAVE	L []]]	SLO	JGH		G	ROUT		DRILL (CUTTINGS	🔅 SA	ND		
					ш	ER		INT								
Ê					SAMPLE TYPE	SAMPLE NUMBER	,	MOISTURE CONTENT				■ STANE	ARD PE	NETRATIO	ON (N) 🔳	Elevation (m)
Depth (m)		SOI			Щ	Z	SPT (N)	С Ш				20		60 NED (kPa	80	tion
Dep		DESCRI	PTION		MP	РЕ	Ъ	TUR	PLASTIC	M.C.	LIQUID	50	100	150 2	200	leva
					SA	SAM		NOIS	20	40 60	I 80	▲ P0 100		PEN. (kP 300	a) ▲ 400	ш
= 0		ay, silty, sandy, damp, d				0)			20	40 00	00		200	500 .	400	-
E		race to some sand, mos brown to dark brown, w		nigh							· · · · · · · · · · · · · · · · · · ·					916.0
E		silty, some sand, trace		iet etiff		B1		18.9	l li	-		E E 🔺				=
_ 1	medium	plastic, light brown with	h dark brown mottlin	q, coal							· · · · · · · · · · · · · · · · · · ·					-
Ē	and oxio inclusio	de specks, thin sand len	ises, high plastic cla	У		B2		11.3	•				Á.			915.0
FI		e precipitates, sand pocl	kets		\bigtriangledown	-										915.0 <u> </u>
E 2	-				\square	D1	12									
Ē	sand pocke	ts to 35mm				B3		11.8	•							=
E	very stiff					B4		12.5	•		ļ. 			A		914.0
Ē																=
= 3											÷		- []		···.	
E					Х	D2	19									913.0
Ē	brown with	grey brown mottling									: : :					-
E 4	brown with	dark brown mottling				B5							^			-
E		-				50										
E	high plastic	clay inclusions				B6		14.2	•		:					912.0
Ē						D3	16									-
- 5		to conductory to modium	n plantia, avida atair	ina	\square	B7										
Ē	weather	to sandy, low to mediur ed	in plastic, oxide stair	iirig,												911.0
						B8		14.3	•							=
E 6																-
Ē					\square	D4	16			· · ·	: :					
F	sand pocke	ts to 50mm			\square											910.0
E ₇						B9							A			
E'											() 					=
E						B10		16	•					A		909.0
Ē					∇	D5	26						-			=
<u> </u>	heavy oxide	e staining, highly weathe	ered		\square		20			÷	÷;		•			-
1/21/1	Heavy onloc	stanning, nigrily weath				B11								•		 908€0 =
1/21						B12		14.3			: :	: · · · · · · · · · · · · · · · · · · ·			•••••••	11/2
E g																`
E					\bigtriangledown											=
E					Å	D6	23									907.0
Ē		Borehole @ 9.6m	ation													-
E 10	Slotted PVC	or Sloughing on Comple Pipe Installed to 9.6m														
Εl	Indicated Wa 2011	ter Level Measured Nov	vember 21,								· · · · · · · · · · · · · · · · · · ·			· · · ·		906.0
Ē	2011															=
E_ 11																-
E .																905.0
- 11.5							1	OGGF	D BY: JKN	Λ		COMP		N DEP	TH 96	
	EBA	Engineeri	ing Cons	sultai	nts	s Li	td.	REVIEV	VED BY: T	Ċ				10/28/2		
	a	5	5		RAWI	NG NO: B	9		Page 1							

GEOTECHNICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ EBA.GDT 1/11/12

PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT:	STA	NTE	C CO	VSULT	ING LTD			PR	OJEC	T NO.	- BOF	REHOLE	E NO.
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL ME	ETH	OD:	150mr	n SOLI	D STEM	AUGEF	२		L12	10192	28 - 11	1BH010	
CITY:	LETHBRIDGE, AB	PROJEC	T El	NGIN	EER:	JIEJUN	I ZHAO			ELE\	/ATIO	N: 915	.82m		
SAMP	LE TYPE 📃 DISTURBED 🗌 NO RECOVE	RY 🔀 S	SPT			A-	-CASING		SHELE			CO	RE		
BACK	FILL TYPE 📃 BENTONITE 🛛 📝 PEA GRAVE	L 🛄 9	SLOI			G	ROUT	8	DRILL	CUTT	INGS	🔅 SAI	ND		
			Щ	SAMPLE NUMBER		ENT									
ε.	2011		SAMPLE TYPE	JME	Î	MOISTURE CONTENT					STAND			FION (N)	Elevation (m)
Depth (m)	SOIL		Щ	Z	SPT (N)	С С				_	20 ▲ UN	40 CONFII		80 Pa) ♠	atior
Del	DESCRIPTION		AMP	1PLI	Ŗ	STUF	PLASTIC	M.C.	LIQUI	⊳ L	50	100	150	200	leva
			S/	SAN		MOIS	20	40 6	1 50 80		▲ PO 100	CKET F 200	2EN. (k 300	Pa) ▲ 400	ш
= 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, or									-					
E_	CLAY - silty, trace to some sand, moist, stiff, medium to l plastic, brown to dark brown, white precipitates	nigh													
E	p			B1		13.6	•				A				915.0
<u> </u>															
E				B2		16.1	•								-
Ē			∇	D1	10				[]] []						
E 2	CLAY (TILL) - silty, some sand, trace gravel, moist, stiff, plastic, brown with dark brown mottling, coal and o	medium xide	\square		10	40.7									914.0
E	specks, sand lenses			B3		12.7									
<u>-</u>	brown			B4		12.7	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·			A			
È,															913.0_
=_3 E	oxide stianing, highly weathered		\bigtriangledown	D2	13		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	(*** (****) (***)			
E			\square	DZ	15										
E	occasional coal inclusions			B5											912.0
	accessional condinactors to 25mm			20					· · · · · · · · · · · ·						-
E	occasional sand pockets to 25mm			B6		14.6			· · · ·						
-				50		11.0			· · · · · · · · · · · · · · · · · · ·						
Ē ₅▼			X	D3	13				· · · ·						1.1/111
11/21/1				B7											21/11
11/2				B8		14									11/2
E				DO		14									910.0_
<u> </u>															
E	trace free water		X	D4	14										
Ē				B9					· · · · · · · · · · · · · · · · · · ·						909.0
E 7				БЭ											909.0
	light brown with dark brown mottling			D10		14			· · · ·						
-	occasional claystone fragments			B10		14					·				
- - 8	very stiff, brown with grey mottling, occasional sand po	ockets	X	D5	18				· · · ·						908.0
			\square	B11				•••••••••••••••••••••••••••••••••••••••						•••••••••••••••••••••••••••••••••••••••	
9				D10		157									
È				B12		15.7			· · · ·						907.0
- 9															
E			/	D6	18										
E	End of Borehole @ 9.6m		$\left \right $												
E10	No Seepage or Sloughing on Completion								· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	906.0
E	Slotted PVC Pipe Installed to 9.6m Indicated Water Level Measured November 21,														
<u>-</u>	2011								· · · · · · · · · · · · · · · · · · ·						
È									· · ·						905.0
E 11 E									· · · · · · · · · · · · · · · · · · ·						
- - 11.5									· · · ·						
							D BY: JK							PTH: 9.6	òm
éb	E EBA Engineering Cons	ITS	s Li	(a . <u>F</u>		VED BY:				COMPL		10/28	/2011		
GEOTECH	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ	L	JKAWI	NG NO: E			18	age 1	UT T						

PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT: S	STA	NTE		VSULT	ING LTD.	PROJECT NO BORE	HOLE NO.
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL ME	THO	DD: 1	150mr	n SOLI	D STEM AUGER	L12101928 - 11B	H011
CITY:	LETHBRIDGE, AB	PROJECT	Γ EN	IGIN	EER:	JIEJUN	N ZHAO	ELEVATION: 916.65m	
SAMP	LE TYPE 📃 DISTURBED 🗌 NO RECOVER	Y 🔀 S	SPT			A-		BY TUBE CORE	
BACK	FILL TYPE BENTONITE PEA GRAVEL	s	SLOU			G	ROUT 📉 DRILL	CUTTINGS 🔃 SAND	
			ш	SAMPLE NUMBER		ENT			
Ê	SOIL		SAMPLE TYPE	۳	Î	MOISTURE CONTENT		STANDARD PENETRATIO	
Depth (m)			Щ	Ξ	SPT (N)	ZE C		20 40 60 8 ◆ UNCONFINED (kPa	
Del	DESCRIPTION		MP		R	STUF	PLASTIC M.C. LIQUI	D 50 100 150 2	
			Ś	SAN		MOI	20 40 60 80	▲ POCKET PEN. (kPa 100 200 300 4)▲ Ш 00
= 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, orga	anics							
E	CLAY - silty, trace to some sand, moist, stiff, medium to hig plasitc, brown to grey brown, white precipitates	gh							
Ē		- P		B1		15.7			916.0_
	CLAY (TILL) - silty, some sand, trace gravel, moist, stiff, mo plastic, brown with dark brown mottling, coal and oxid	edium de							
Ē	specks, sand lenses			B2		12.7	•		
Ē	white precipitates		\square	D1	13				915.0_
E 2			\square	B3		12.5			
Ē	oxide staining, highly weathered			53		12.5			
				B4		10.7	•	· · · · · · · · · · · · · · · · · · ·	914.0
<u> </u>									
Ē	brown, sand pockets to 50mm		\square	D2	15				
E			\square						
Ē				B5					913.0_
- 4	trace free water								
3	light brown with dark brown mottling			B6		13.2	•		
Ē	moist, very stiff, brown with dark brown mottling		$ \rightarrow $						912.0
E 5			X	D3	18				
E				B7					
<u>-</u>				B8		14.3			911.0_
Ē 6									
E 6			\square						
E			X	D4	17				
E	light brown with dark brown mottling, occasional high pla inclusions	istic clay		в9					910.0_
- 7									<u></u>
				B10		13.2	•		
Ē			\square						909.0_
E 8			\mathbb{X}	D5	23				
Εl				B11					
È				B12		13		· · · · · · · · · · · · · · · · · · ·	<u>90</u> 8 0
1/21/11 ▲									
1/21/.			\vdash						11/21/11
			Х	D6	19				:: =
E I	End of Borehole @ 9.6m		\square						907.0_
10	No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m								
Εl	Indicated Water Level Measured November 21,								
Εl	2011			906.0_					
E 11									
E									
- 11.5									
	EBA Engineering Cons	ultan	ts	11	td 🗄		ED BY: JKM VED BY: TC	COMPLETION DEPT COMPLETE: 10/28/20	
eod		antan	.0				NG NO: B11	Page 1 of 1	V 1 1
GEOTECH	VICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ EB	A.GDT 1/11/12							

LICACTORN NM 14 SEC 179-21 WMM DRILL METHOD: 150mm SOLD STEM AUGER LI201028 A PROJECT ENDINEER-LIEUN 2140 C ELVATION 915 16m SAMPLE TYPE BACKFLIL TYPE BACKF	PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT:	STA	NTE	C CO	ISULT	ING LTD.	PROJECT NO BOREHOLE	ENO.
SMAPLE TYPE DISTURBED ID RECOVERY ST Accase INSELEY TUBE CORE BACKFUL TYPE BENTONTE TRADASS PERTATION NO SMD SMD Image: Solid state of the second state of th	LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL ME	ETH	OD:	150mr	n SOL	ID STEM AUGER	L12101928 - 11BH012	
BACKFILL TYPE BENTONTE PEAGAVEL DESCRIPTION SOLL SOLL DESCRIPTION SOLL DESCRIPTION SOL SOL DESCRIPTION SOL DESCRIPTION SOL DESCRIPTION SOL DESCRIPTION SOL SOL SOL SOL SOL SOL SOL S	CITY:	Lethbridge, Ab	PROJEC	T EN	IGIN	EER: 、	JIEJUN	N ZHAO	ELEVATION: 915.16m	
Image: Solution of the second seco	SAMP	PLE TYPE 📃 DISTURBED 🗌 NO RECOVE	RY 🔀 S	SPT			A	-Casing Shel	BY TUBE CORE	
0 0 CDPSOL-clay, sity, seety, seety, seety, seety, seety, seety, most, stiff, medium to high plastic, trown to dark trawn 9150 1 heavy white procipitates D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium to high plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 3 to be seed, mode staff, medium to high plastic, light brown with B4 seets seed, mode staff, medium assess and motion assessment of plastic clay minutacions B1 4 usery stiff, trown with dark brown moting D2 16 5 usery stiff, trown with dark brown moting D2 16 6 usery stiff, trown with dark brown moting D2 16 7 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stoxen, heavy code staining, hig	BACK	FILL TYPE 📃 BENTONITE 📝 PEA GRAVE	L []] (SLOL			G	ROUT 🔀 DRILL	CUTTINGS 🔅 SAND	
0 0 CDPSOL-clay, sity, seety, seety, seety, seety, seety, seety, most, stiff, medium to high plastic, trown to dark trawn 9150 1 heavy white procipitates D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium to high plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 3 to be seed, mode staff, medium to high plastic, light brown with B4 seets seed, mode staff, medium assess and motion assessment of plastic clay minutacions B1 4 usery stiff, trown with dark brown moting D2 16 5 usery stiff, trown with dark brown moting D2 16 6 usery stiff, trown with dark brown moting D2 16 7 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stoxen, heavy code staining, hig				ш	BER		ENT			<u> </u>
0 0 CDPSOL-clay, sity, seety, seety, seety, seety, seety, seety, most, stiff, medium to high plastic, trown to dark trawn 9150 1 heavy white procipitates D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium to high plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 3 to be seed, mode staff, medium to high plastic, light brown with B4 seets seed, mode staff, medium assess and motion assessment of plastic clay minutacions B1 4 usery stiff, trown with dark brown moting D2 16 5 usery stiff, trown with dark brown moting D2 16 6 usery stiff, trown with dark brown moting D2 16 7 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stoxen, heavy code staining, hig	(Ê	2011		Σ	JME	Î	ONT			m) (
0 0 CDPSOL-clay, sity, seety, seety, seety, seety, seety, seety, most, stiff, medium to high plastic, trown to dark trawn 9150 1 heavy white procipitates D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium to high plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 3 to be seed, mode staff, medium to high plastic, light brown with B4 seets seed, mode staff, medium assess and motion assessment of plastic clay minutacions B1 4 usery stiff, trown with dark brown moting D2 16 5 usery stiff, trown with dark brown moting D2 16 6 usery stiff, trown with dark brown moting D2 16 7 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stoxen, heavy code staining, hig	oth (Щ	Z	рТ (I	ZE C			atior
0 0 CDPSOL-clay, sity, seety, seety, seety, seety, seety, seety, most, stiff, medium to high plastic, trown to dark trawn 9150 1 heavy white procipitates D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium to high plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 3 to be seed, mode staff, medium to high plastic, light brown with B4 seets seed, mode staff, medium assess and motion assessment of plastic clay minutacions B1 4 usery stiff, trown with dark brown moting D2 16 5 usery stiff, trown with dark brown moting D2 16 6 usery stiff, trown with dark brown moting D2 16 7 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stoxen, heavy code staining, hig	Del	DESCRIPTION		MP	IPLE	Ŗ	STUF	PLASTIC M.C. LIQUI	D 50 100 150 200	leva
0 0 CDPSOL-clay, sity, seety, seety, seety, seety, seety, seety, most, stiff, medium to high plastic, trown to dark trawn 9150 1 heavy white procipitates D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium to high plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 2 CLAY (TILL) sity, seety assess and, most, stiff, medium plastic, trown with dark brown moting, cost and oxide seets minutacions D1 12 3 to be seed, mode staff, medium to high plastic, light brown with B4 seets seed, mode staff, medium assess and motion assessment of plastic clay minutacions B1 4 usery stiff, trown with dark brown moting D2 16 5 usery stiff, trown with dark brown moting D2 16 6 usery stiff, trown with dark brown moting D2 16 7 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stiff, trown with dark brown moting D6 27 9 usery stiff, trown with dark brown moting D6 27 14 usery stoxen, heavy code staining, hig				Ś	SAN		MOIS	20 40 60 80		ш
1 heavy while precipitates 82 2 CLAY (TLL) - sity, some sand, trace gravel, most, self, medum precipitates 914.0 2 CLAY (TLL) - sity, some sand, trace gravel, most, self, medum precipitates (sight boow with dark brown motiling 913.0 3 otrown to grave sand, medum to high plastic, light boow with dark brown motiling 912.0 3 otrown to grave brown, heavy coxide staining, highly weathered 96 5 brown to gray brown, heavy coxide staining, highly weathered 96 6 brown to gray brown, heavy coxide staining, highly weathered 910.0 7 samd pockets to 50mm 910.0 9 brown with dark brown motiling 912 10 brown with dark brown motiling 912 10 brown with dark brown motiling 912 10 brown with dark brown motiling 912 11 brown with dark brown motiling 912 10 brown with dark brown motiling 912 11 brown with dark brown motiling 912 10 brown with dark brown motiling 912 11 brown with dark brown motiling 912	= 0									915.0
1 heavy while precipitates 8 2 CLAY (TLL) - sity, some sand, trace gravel, moist, stiff, medum place, brown with dark brown moting, cost and oxide statistics 914.0 3 trace to some and, medum to high place(, light brown with dark brown with dark brown moting 91 4 trace to some and, medum to high place(, light brown with dark brown with dark brown moting 91 4 way stiff, brown with dark brown moting 91 5 trown to grey brown, heavy oxide staining, highly weathered 91 6 brown to grey brown, heavy oxide staining, highly weathered 91 7 brown to grey brown, heavy oxide staining, highly weathered 91 8 brown to grey brown, heavy oxide staining, highly weathered 91 9 brown to grey brown, heavy oxide staining, highly weathered 91 10 brown to grey brown, heavy oxide staining, highly weathered 91 9 brown to grey brown, heavy oxide staining, highly weathered 91 9 brown to grey brown, heavy oxide staining, highly weathered 91 9 brown to grey brown, heavy oxide staining, highly weathered 91 9 brown to grey brown, heavy oxide staining, highly weather	E_	CLAY - silty, trace to some sand, moist, stiff, medium to to plastic, brown to dark brown	nigh							=
a a a b	E				B1		12.6	•		-
a a a b	<u> </u>									914.0 -
a a a b	E	heavy white precipitates			B2		19.4			
a a a b	E	CLAY (TILL) - silty some sand trace gravel moist stiff	medium	\square		10				-
a a a b	E 2	plastic, brown with dark brown mottling, coal and or	kide	\square		12				=
 trace to some sand, meduru to high plastic, light brown with ack brown moting wey stift, brown with dark brown moting vey stift, brown with dark brown moting vey stift, brown with dark brown moting brown to grey brown, heavy oxide staining, highly weathered brown to grey brown, heavy oxide staining, highly weathered brown to grey brown, heavy oxide staining, highly weathered brown to grey brown, heavy oxide staining, highly weathered brown to grey brown, heavy oxide staining, highly weathered brown with dark brown moting br	E		ау		B3		13.3			913.0
 a. oxide stianing, weathered wery stift, brown with dark brown mothing b. outrown with dark brown mothing c. sand pockets to 25mm b. outrown with dark brown mothing c. sand pockets to 25mm c. sand pockets to 25mm d. sand pockets to 50mm b. outrown with dark brown mothing c. sand pockets to 50mm b. outrown with dark brown mothing c. sand pockets to 50mm b. outrown with dark brown mothing c. sand pockets to 50mm b. outrown with dark brown mothing c. sand pockets to 50mm b. outrown with dark brown mothing c. sand pockets to 50mm b. outrown with dark brown mothing c. sand pockets to 50mm b. outrown with dark brown mothing c. sand pockets to 50mm b. outrown with dark brown mothing d. outrown with dark brown mothing	E_	trace to some sand, medium to high plastic, light brown	n with		B4		18.1			-
4 6 911.0. 5 03 16 6 03 16 7 88 14.1 6 090.0. 7 99 8 brown vib dark brown mottling sand pockets to 25mm 908.0. sand pockets to 25mm 909.0. 9 9 9 14 9 907.0. 10 End of Borehole @ 9.6m 10 No Seepage of Soughing on Completion 11 9 11 11.3 11 906.0. 11 906.0. 11 907.0. 11.1 907.0. 9 906.0. 11 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 906.0. 11.1 <td< td=""><td>Ē.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Ē.									
4 6 911.0. 5 03 16 6 03 16 7 88 14.1 6 090.0. 7 99 8 brown vib dark brown mottling sand pockets to 25mm 908.0. sand pockets to 25mm 909.0. 9 9 9 14 9 907.0. 10 End of Borehole @ 9.6m 10 No Seepage of Soughing on Completion 11 9 11 11.3 11 906.0. 11 906.0. 11 907.0. 11.1 907.0. 9 906.0. 11 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 906.0. 11.1 <td< td=""><td>- 3</td><td></td><td></td><td>\square</td><td></td><td></td><td></td><td></td><td>·····</td><td>912.0</td></td<>	- 3			\square					·····	912.0
4 6 911.0. 5 03 16 6 03 16 7 88 14.1 6 090.0. 7 99 8 brown vib dark brown mottling sand pockets to 25mm 908.0. sand pockets to 25mm 909.0. 9 9 9 14 9 907.0. 10 End of Borehole @ 9.6m 10 No Seepage of Soughing on Completion 11 9 11 11.3 11 906.0. 11 906.0. 11 907.0. 11.1 907.0. 9 906.0. 11 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 906.0. 11.1 <td< td=""><td>Ē</td><td></td><td></td><td>\square</td><td>D2</td><td>16</td><td></td><td></td><td></td><td>=</td></td<>	Ē			\square	D2	16				=
4 6 911.0. 5 03 16 6 03 16 7 88 14.1 6 090.0. 7 99 8 brown vib dark brown mottling sand pockets to 25mm 908.0. sand pockets to 25mm 909.0. 9 9 9 14 9 907.0. 10 End of Borehole @ 9.6m 10 No Seepage of Soughing on Completion 11 9 11 11.3 11 906.0. 11 906.0. 11 907.0. 11.1 907.0. 9 906.0. 11 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 907.0. 11.1 906.0. 11.1 <td< td=""><td>Ē</td><td></td><td></td><td></td><td>D5</td><td></td><td></td><td></td><td></td><td>-</td></td<>	Ē				D5					-
5 brown to grey brown, heavy oxide staining, highly weathered 14.5 4 990.0. 6 brown to grey brown, heavy oxide staining, highly weathered 14.1 990.0. 990.0. 7 sand pockets to 25mm 900.0. 14.1 990.0. 990.0. 8 sand pockets to 25mm 900.0. 14.1 900.0. 900.0. 8 sand pockets to 25mm 14 900.0. 900.0. 900.0. 9 sand pockets to 25mm 14 900.0. 900.0. 900.0. 10 End of Borehole @ 9.6m 900.0. 900.0. 900.0. 900.0. 11 900.0. 900.0. 900.0. 900.0. 900.0. 9 900.0. 900.0. 900.0. 900.0. 900.0. 10 End of Borehole @ 9.6m 900.0. 900.0. 900.0. 900.0. 11 900.0. 900.0. 900.0. 900.0. 900.0.					55					
5 brown to grey brown, heavy oxide staining, highly weathered 16 900.0 6 88 14.1 900.0 7 88 14.1 900.0 8 sand pockets to 25mm 900.0 sand pockets to 25mm 910 14 sand pockets to 25mm 910 14 sand pockets to 50mm 95 27 8 sand pockets to 50mm 911 9 90 06 27 10 End of Borehole @ 9.6m 906.0 10 Sepage of Sloughing on Completion 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 906.0 906.0 11.1 <td>E</td> <td></td> <td></td> <td></td> <td>DG</td> <td></td> <td>14.5</td> <td></td> <td></td> <td>911.0</td>	E				DG		14.5			911.0
5 brown to grey brown, heavy oxide staining, highly weathered 97 6 brown to grey brown, heavy oxide staining, highly weathered 98 7 brown with dark brown mottling 99 8 sand pockets to 25mm 908.0 8 brown with dark brown mottling 910.0 9 9 9 9 9 9 10 Dof seepage or Sloughing on Completion 907.0 110 Stothed PVC Pie Inside to 9.6 m 909.0 10 Stothed PVC Pie Inside to 9.6 m 909.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 905.0 905.0 11.1 </td <td>-</td> <td></td> <td></td> <td></td> <td>DU</td> <td></td> <td>14.5</td> <td></td> <td></td> <td></td>	-				DU		14.5			
Ba bown to grey brown, heavy oxide staining, highly weathered box				\mathbb{N}	D3	16				-
Image: Solution of global born, hearly backer stanling, lightly relative of the stanling, lightly relative of t	E S			\square	B7					910.0
Image: Solution of global born, hearly backer stanling, lightly relative of the stanling, lightly relative of t	E				50					-
7 sand pockets to 25mm 908.0 8 sand pockets to 55mm 908.0 8 sand pockets to 50mm 95 9 911 95 9 911 914 9 911 914 9 911 914 9 911 914 9 911 914 9 911 914 9 911 914 9 911 914 9 911 914 9 911 914 9 911 914 9 914 914 9 914 914 9 914 914 9 914 914 9 914 914 9 914 914 9 914 914 90 914 914 90 914 914 910 914 914 911 914 914 911 9	E	brown to grey brown, heavy oxide staining, highly weat	hered		B8		14.1			-
7 sand pockets to 25mm 9 8 sand pockets to 50mm B10 14 9 sand pockets to 50mm D5 27 B11 B12 11.3 sand pockets to 50mm 9 sand pockets to 50mm B11 B12 10 End of Borehole @ 9.6m sand pockets to 9.6m sand pockets to 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m sand pockets 21, 2011 11 Sepage or Sloughing on Completion sand pockets 21, 2011 Sand pockets 21, 2011 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 9.6m REVIEWED BY: TC COMPLETE: 10/28/2011 DRAWING NO: B12 Page 1 of 1	<u> </u>									000 n =
 and pockets to 25mm brown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown with dark brown with dark brown with dark brown with dark brown	E			М	D4	23				505.0
 and pockets to 25mm brown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown mottling brown with dark brown mottling carrown with dark brown with dark brown with dark brown with dark brown with dark brown	E			\square	-					-
Indicator End of Borehole @ 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011 905.0	E ₇				B8					_
Indicator End of Borehole @ 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011 905.0	E									908.0
Indicator End of Borehole @ 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011 905.0	E_	sand pockets to 25mm			B10		14	•	· · · · · · · · · · · · · · · · · · ·	-
Indicator End of Borehole @ 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011 905.0	F _	brown with dark brown mottling		\square	D5	27				
Indicator End of Borehole @ 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011 905.0		sand pockets to 50mm		\square						907.0
Indicator End of Borehole @ 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011 905.0	Ę									-
Indicator End of Borehole @ 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011 905.0	E				B12		11.3	•		
Indicator End of Borehole @ 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011 905.0	E 9									
Indicator End of Borehole @ 9.6m No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 9.6m Borehole Measured Dry November 21, 2011 905.0	Ē			\square	DG	22				906.0
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 9.6m REVIEWED BY: TC COMPLETE: 10/28/2011 DRAWING NO: B12 Page 1 of 1		5		Д	DO	22				=
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 9.6m REVIEWED BY: TC COMPLETE: 10/28/2011 DRAWING NO: B12 Page 1 of 1				$\left \right $						
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 9.6m REVIEWED BY: TC COMPLETE: 10/28/2011 DRAWING NO: B12 Page 1 of 1		Slotted PVC Pipe Installed to 9.6m								905.0
11.5 Image: Second state s	E	Borehole Measured Dry November 21, 2011								=
11.5 Image: Second state s	È									-
EBA Engineering Consultants Ltd. BA Engineering Consultants Ltd. REVIEWED BY: TC COMPLETE: 10/28/2011 DRAWING NO: B12 Page 1 of 1	<u> </u> 11									904 n =
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 9.6m Reviewed BY: TC COMPLETE: 10/28/2011 DRAWING NO: B12 Page 1 of 1	L - 11 5									
EBA Engineering Consultants Ltd. REVIEWED BY: TC COMPLETE: 10/28/2011 DRAWING NO: B12 Page 1 of 1						L	OGGE	D BY: JKM	COMPLETION DEPTH: 9.6	m
DRAWING NO: B12 Page 1 of 1	eb	EBA Engineering Cons	sultar	nts	Li	td.[F	REVIEV	WED BY: TC	COMPLETE: 10/28/2011	
	GEOTECH						RAWI	NG NO: B12	Page 1 of 1	

PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT:	STA	NTE	C CO	VSULT	ING LTD			F	PROJEC	T NO.	- BOI	REHOL	E NO.
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL M	ETH	IOD:	150mr	n SOL	ID STEM	AUGE	۲		L12	10192	<u>2</u> 8 - 1′	1BH013	3
CITY:	LETHBRIDGE, AB	PROJEC	TE	NGIN	EER:	JIEJUN	N ZHAO			EL	EVATIO	N: 913	.06m		
SAMF	PLE TYPE DISTURBED 🛛 NO RECOV	ERY	SPT			A	-CASING		SHEL			CC	RE		
BACK	FILL TYPE 🗾 BENTONITE 🛛 💽 PEA GRAVE		SLO			G	ROUT			CU1	ITINGS 🗄	🔅 SA	ND		
			ш	SAMPLE NUMBER		ENT									
(Ê	SOIL		SAMPLE TYPE	JME	Î	MOISTURE CONTENT					STAND/				Elevation (m)
Depth (m)			Щ	Z	SPT (N)	ЯЕ С					20 ● UN	40 CONFII	60 NED (k	80 Pa) ♠	atior
Del	DESCRIPTION		١MP	IPLE	Ŗ	STUF	PLASTIC	M.C.	LIQUI	D	50	100	150	200	leva
			S/	SAN		MOIS	20	40 0	6 0 80		▲ PO 100	CKET F 200		:Pa) ▲ 400	
= 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, o	organics	-												913.0
E	CLAY - silty, trace sand, moist, stiff, high plastic, brown brown, white precipitates	to dark													
E	light brown with dark brown mottling, thin sand lenses			B1		16.5	•			-					
E_ 1															912.0_
				B2		18.4				÷					
11/21/11			∇	D1	10										1.1111 1.1111 1.11111 1.11111
212			\square		10	00 F			· · · · · · · · · · · · · · · · · · ·						9110
E	CLAY (TILL) - silty, trace to some sand, trace gravel, mo medium to high plastic, light brown with dark brow	ist, stiff, n mottling		B3		22.5				÷					
E-	coal and oxide specks, sand lenses	, interaction of the second		B4		16.5	•		· · · · · · · · ·						
E_ 3	moist to very moist									-					
Ē			\square	D2	10				······································		····;···;···				910.0_
E	some sand, meidum plastic, occasional high plastic c	av	\square	DZ	10										
E	inclusions, occasional sand pockets to 25mm	uy		B5						-					
4															909.0_
E	trace to some sand, medium to high plastic			B6		13.5	•			-					
- 3 - 4 	trace to some sand, medium to high plastic								· · · · · · · · · · · · · · · · · · ·						
E 5			Х	D3	12		: : :			÷					908.0
F	moist, very stiff			B7											900.0_
E_				B8		13.6									
F ,										-					
E6															907.0_
			Х	D4	18					÷					
E	End of Borehole @ 6.6m									-					
<u> </u>	No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 6.6m														906.0_
E	Indicated Water Level Measured November 21,									-					
Ē	2011								······································				••••		
E 8															905.0
E										-					
E										• • • • •					
E 9										-					
E									······································	• • • • •					904.0
E															. 1
E															
<u> </u>									· · · · · · · · · · · · · · · · · · ·						903.0_
E															
Ē															
E 11														· · · · · · · · · · · · · · · · · · ·	902.0_
È															
- 11.5					1		D BY: JK	<u>.</u> М	<u>: : :</u>	:	COMPL			отц. с	 6m
	EBA Engineering Con	sultar	nt.s	s / :	td╠		VED BY:								
eo			(NG NO: E				Page 1		10/01			
GEOTECH	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GP.	EBA.GDT 1/11/1	2												

PROJECT: LANDS NORTH OF UPLANDS	CLIEN	T: ST/	ANTE	C CO	VSULT	ING LTD			PROJECT	Г NO В	OREHOLE	E NO.
LOCATION: NW 1/4 SEC 17-9-21 W4M	DRILL	METH	IOD:	150mr	n SOL	ID STEM	AUGER		L12	101928 -	11BH014	
CITY: LETHBRIDGE, AB	PROJE	CT E	NGIN	IEER:	JIEJUN	N ZHAO		EL	EVATION	N: 913.45	im	
	NO RECOVERY	SPT			A	-CASING		ELBY -		CORE		
BACKFILL TYPE BENTONITE	PEA GRAVEL	SLO				ROUT		ILL CU	JTTINGS 🤅	SAND		
		щ	SAMPLE NUMBER		MOISTURE CONTENT							
E SOIL		TYPE	NM	Î	ONT						RATION (N)	Elevation (m)
ि SOIL इन्हे DESCRIPTI		Щ	Z Ш	SPT (N)	RC				20	40 60 CONFINED		atio
	UN	SAMPLE	ΛPL	5	STUF	PLASTIC	M.C. LIC	QUID	50	100 15	0 200	
		Ś	SAN		MOI	20	40 60	н 80	▲ POC 100	CKET PEN 200 30		
0 TOPSOIL - clay, silty, sandy, damp, dark bu		_						: :				=
CLAY - silty, trace to some sand, moist, stif plastic, brown to dark brown, white pr												913.0
CLAY - silty, trace to some sand, moist, stif plastic, brown to dark brown, white pr CLAY (TILL) - silty, some sand, trace grave modium plastic, light brown with dark			I B1		16.5							=
CLAY (TILL) - silty, some sand, trace grave medium plastic, light brown with dark	I, moist, very stiff,									••••		
and ovide specks, high plastic clav in	clusions		B2		17.1					A		912.0
dark brown, heavy white precipitates			D1	16								
2 trace to some sand, medium to high plas brown mottling, thinly laminated	tic, brown with dark	\square	B3		23.9			· · · · · · · · · · · · · · · · · · ·				
E	to modium plantia light											911.0
 some sand to sandy, damp to moist, low brown with dark brown mottling, sand 	pockets to 50mm		B4		12.8	•					· · · · A	
E 3												
 some sand, medium plastic, brown to da to 30mm 	rk brown, sand pockets		D2	33				· · ·				-
E damp to moist		\vdash	×					· · · · · · · · · · · · · · · · · · ·				910.0_
			B5									-
E I			B6		12.1	•						909.0
 3 some sand, medium plastic, brown to da to 30mm damp to moist 4 oxide staining, weathered, occasional co 	al inclusions		, D	07] =
<u> </u>			D3	27								
E			B7									908.0
E			B8		12	•						500.0
E_ 6												
			D4	25					_			<u></u> <u></u> <u></u>
			D4	25								90≹0
		_										
 Slotted PVC Pipe Installed to 6.6m 												
Indicated Water Level Measured Novembe 2011	ır 21,											906.0
- 8												
E												905.0
E I											•••••••••••••••••••••••••••••••••••••••	
<u> </u>												
E												
E l												904.0
E 10												
E V										· · · · · · · · · · · · · · · · · · ·		
E												903.0_
E												=
F 11.5										902.0		
	0 - "		,			D BY: JK VED BY:					EPTH: 6.6	Sm
EBA Engineering	EBA Engineering Consultants Ltd								COMPL		31/2011	
GEOTECHNICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEO	TECHNICAL.GPJ EBA.GDT 1/1		JKAWI	NG NO: E	514		Page 1 d	DT 1				

PRO	ECT: LANDS NORTH OF UPLANDS	CLIENT:	STA	NTE		VSULT	ING LTD.	PROJECT NO BOREHOLE NO.	
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL ME	ETH	OD:	150mr	n SOL	ID STEM AUGER	L12101928 - 11BH015	
CITY:	LETHBRIDGE, AB	PROJEC	ΤEΝ	IGIN	EER:	JIEJUN	N ZHAO	ELEVATION: 911.02m	
SAMF	PLE TYPE 📃 DISTURBED 🗌 NO RECOVE	RY 🔀 S	SPT			A	-Casing Sheli	BY TUBE CORE	
BACK	(FILL TYPE 📄 BENTONITE 🛛 🚺 PEA GRAVEL	L []]] \$	SLOU	JGH		G	Rout 🛛 drill	CUTTINGS 🚉 SAND	
			ш	ER		INT			
Ê			TYPE	SAMPLE NUMBER	Î	MOISTURE CONTENT		■ STANDARD PENETRATION (N) ■ 20 40 60 80 ◆ UNCONFINED (kPa) ◆ 50 100 150 200 ▲ POCKET PEN. (kPa) ▲	
Depth (m)	SOIL		Щ	Z	SPT (N)	ЦС			j.
Dep	DESCRIPTION		SAMPLE	РГЕ	Ъ	TUR	PLASTIC M.C. LIQUI		5
			S	AM		NOIS	20 40 60 80		
- 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, or	ganics		S			20 40 60 60	100 200 300 400 911.0	J
E	CLAY - silty, trace to some sand, moist, stiff, medium to h	nigh							Ξ
Ē	plastic, brown to dark brown white precipitates			B1		11.2	•		3
	CLAY (TILL) - silty, some sand, trace gravel, moist, stiff, r	nedium						910.0	0
Ē	plastic, light brown with dark brown mottling, coal a specks, sand pockets to 30mm, occasional high pla	nd oxide Istic clav		B2		12.4	•		-
F	inclusions, white precipitates	···· ,							-
E_ 2	some sand to sandy, low to medium plastic		М	D1	12			909.0	_ _
= 1				B3		16.1		\$09.0	J
<u> </u>	some sand, medium plastic			B4		17.6	•	· · · · · · · · · · · · · · · · · · ·	-
E									Ξ
- 3	oxide staining, weathered		\square					908.0	0 <u> </u>
E	silt pockets		М	D2	12				Ξ
<u> </u>	trace to some sand, medium to high plastic, brown with	n dark		D 5					-
E 4	brown mottling			B5				907.0	0
4	damp tpo moist, occasional gravel pockets to 50mm								-
-				B6		12.6			_
5			М	D3	14				. =
5	some sand, medium plastic, thin sand lenses		\square	B7				906.0) <u> </u>
Ē	sandy, low plastic, occasional sand pockets to 100mm								Ξ
Ē				B8		11.5	•		-
<u> </u>								905.0	0
6	some sand to sandy, low to medium plastic		\square	D4	12				Ξ
-	End of Develope @ C.C.		А						-
Ē 7	End of Borehole @ 6.6m No Seepage or Sloughing on Completion							904.0	ے م
Ē	Slotted PVC Pipe Installed to 6.6m								
Ē_	Borehole Measured Dry November 21, 2011								_
Ē									Ξ
E_ 8								903.0	0-
Ē									Ξ
F									-
E 9								902.0	0
Ē									-
<u>-</u>							-		
E10									_ _
								901.0	J
È.									-
Ē									-
<u> </u>								900.0	0 <u> </u>
E F 11.5									Ξ
	· · · · · · · ·		<u> </u>			OGGE	D BY: JKM	COMPLETION DEPTH: 6.6m	
éb	🖥 EBA Engineering Cons	sultar	its	: Li	td.F	REVIEV	NED BY: TC	COMPLETE: 10/31/2011	
GEOTECH	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL GPJ E					RAWI	NG NO: B15	Page 1 of 1	

 damp to moist, sandy, low plastic, sand pockets to 50mm oxide staining, weathered, very stiff SAND - silty, trace to some clay, poorly graded, medium grained, moist, compact, brown, coal staining, weathered, occasional high plastic clay inclusions 	PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT:	STA	NTE		VSULT	ING LTD			PROJEC	t no B	OREHOL	E NO.	
SAMPLE TYPE DISTURIED 0.050000000000000000000000000000000000	LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL M	ETH	OD:	150mr	n SOL	D STEM	AUGER		L12	101928 -	11BH016		
BACKFILL TYPE DENTONITE PLANCKAUL DESCRIPTION SOLL DESCRIPTION SOLL DESCRIPTION SOLL DESCRIPTION SOL DESCRIPT	CITY:	LETHBRIDGE, AB	PROJEC	T El	NGIN	EER:	JIEJUN	I ZHAO		El	LEVATION	N: 913.75	im		
Email SOIL DESCRIPTION Email	SAMF		RY 🔀 :	SPT			A	CASING							
0 0 CDPSOL: day, silly, starely, damp, dark brown, nots, stiff, modulu to high pasts, grap brown, das, stiff, modulu to high pasts. (by Indusions, light brown with dark brown multing in the most start, high pasts. B1 1 1 11 11 2 CLAY (TILL) - silly, take b screen start, brack gravel, model, stiff, modulu to high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, low pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the multing in the multing in the most start, high pasts. [by those on multing in the multing i	BACK	FILL TYPE 🗾 BENTONITE 🚺 PEA GRAVE	L []] :	SLO				ROUT		RILL CL	JTTINGS 🤶	SAND			
0 0 CDPSOL: day, silly, starely, damp, dark brown, nots, stiff, modulu to high pasts, grap brown, das, stiff, modulu to high pasts. (by Indusions, light brown with dark brown multing in the most start, high pasts. B1 1 1 11 11 2 CLAY (TILL) - silly, take b screen start, brack gravel, model, stiff, modulu to high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, low pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the multing in the multing in the most start, high pasts. [by those on multing in the multing i				Щ	BER		ENT								
0 0 CDPSOL: day, silly, starely, damp, dark brown, nots, stiff, modulu to high pasts, grap brown, das, stiff, modulu to high pasts. (by Indusions, light brown with dark brown multing in the most start, high pasts. B1 1 1 11 11 2 CLAY (TILL) - silly, take b screen start, brack gravel, model, stiff, modulu to high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, low pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the multing in the multing in the most start, high pasts. [by those on multing in the multing i	(E	SOII		TYF	ΠMI	Î	INO							u)u	
0 0 CDPSOL: day, silly, starely, damp, dark brown, nots, stiff, modulu to high pasts, grap brown, das, stiff, modulu to high pasts. (by Indusions, light brown with dark brown multing in the most start, high pasts. B1 1 1 11 11 2 CLAY (TILL) - silly, take b screen start, brack gravel, model, stiff, modulu to high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, low pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the multing in the multing in the most start, high pasts. [by those on multing in the multing i	pth			Ľ	Ц	PT	REO							atio	
0 0 CDPSOL: day, silly, starely, damp, dark brown, nots, stiff, modulu to high pasts, grap brown, das, stiff, modulu to high pasts. (by Indusions, light brown with dark brown multing in the most start, high pasts. B1 1 1 11 11 2 CLAY (TILL) - silly, take b screen start, brack gravel, model, stiff, modulu to high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, low pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the most start, high pasts. [by those on multing in the multing in the multing in the most start, high pasts. [by those on multing in the multing i	صّ	DESCRIPTION		AMI	MPL	ပ	ISTU	PLASTIC	M.C. L	IQUID		100 15	0 200 (kPa) ▲	Ше	
CLAY - sity, trace is some sand, most, stiff, medum to high				S	SAI		0 W	20	40 60	80					
Image: Sector	E ⁰													-	
In the set and, high basic action by the set of the s	-	plastic, grey brown	-		R1		17.3								
Constant and the standy low plastic, samp codets to 50mm Constant and the samp weathered, we stiff Clarry (TILL) - sity, some samp code game and maximal weathered, occasional high plastic day inclusions Samp code standing, weathered, occasional high plastic day inclusions Setting the same same code in the same same same mean mean mean mean mean mean mean m	E 1	silt pockets, high plastic clay inclusions, light brown with brown mottling	h dark		ы		17.5							913.0_=	
Constant and the standy low plastic, samp codets to 50mm Constant and the samp weathered, we stiff Clarry (TILL) - sity, some samp code game and maximal weathered, occasional high plastic day inclusions Samp code standing, weathered, occasional high plastic day inclusions Setting the same same code in the same same same mean mean mean mean mean mean mean m	Ē				B2		20.8] _	
Constant and the standy low plastic, samp codets to 50mm Constant and the samp weathered, we stiff Clarry (TILL) - sity, some samp code game and maximal weathered, occasional high plastic day inclusions Samp code standing, weathered, occasional high plastic day inclusions Setting the same same code in the same same same mean mean mean mean mean mean mean m	E-														
Constant and the standy low plastic, samp codets to 50mm Constant and the samp weathered, we stiff Clarry (TILL) - sity, some samp code game and maximal weathered, occasional high plastic day inclusions Samp code standing, weathered, occasional high plastic day inclusions Setting the same same code in the same same same mean mean mean mean mean mean mean m	É,			Х	D1	11								912.0	
Constraints weathered, wey stiff CLAY (TILL) - silty, some sand to sandy, trace gravel, most, correct and more and model and coasional high plastic day inclusions SAND - silty, trace to some day, poorly graded, medium grained, most, correct and model and coasional high plastic day inclusions SAND - silty, trace to some day, poorly graded, medium grained, most, correct and model and coasional high plastic day inclusions SAND - silty, trace to some day, poorly graded, medium grained, most, correct and model and coasional high plastic day inclusions Setting weathered Setting weathered Setting weathered Setting by the setting of the some day, trace gravel, most, very stiff, low to medium plastic, light brown with dark brown motting Setting by the setting of the some day, trace gravel, most, very stiff, low to medium plastic, light brown with dark brown motting Setting by the setting to 6.6 m Setting	E 2	coal and oxide specks, thin sand lenses, high plast			B3		13.9	•		•••••••		A	•••••••••••••••••••••••••••••••••••••••	1 =	
a oxide staining, weathered, very stift SAND - sity, trace to some day, poorty graded, medium grained, moist, compact, known, coal staining, weathered, occasional hgh plastic day inclusors SAND - sity, trace to some day, poorty graded, medium grained, moist, compact, known, coal staining, weathered, occasional hgh plastic day inclusors SAND - sity, trace to some day, inclusors SAND - sity, trace to some day, motify graded, medium grained, moist, compact, known to gray known, coal and out staining, weathered, occasional out staining, weathered,	Ē_		nm		B4		10.6	•							
4 BS 900- 5 CLAY (TLL) - silty, some sand to sandy, trace gravel, moist, very stiff, too medum plastic, light brown, call and oxide staining, weathered 903 30 6 BB BB 90 900.0 6 CLAY (TLL) - silty, some sand to sandy, trace gravel, moist, very stiff, too medum plastic, light brown with dark brown moting 90 900.0 6 End of Borehole @ 6.6m 900.0 900.0 900.0 7 End of Borehole @ 6.6m 900.0 900.0 7 No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 6.6m 900.0 9 900.0 900.0 900.0 10 900.0 900.0 900.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 1031/2011 DRAWING ND: B16 Page 101	Ē.													911.0_	
4 BS 900- 5 CLAY (TLL) - silty, some sand to sandy, trace gravel, moist, very stiff, too medum plastic, light brown, call and oxide staining, weathered 903 30 6 BB BB 90 900.0 6 CLAY (TLL) - silty, some sand to sandy, trace gravel, moist, very stiff, too medum plastic, light brown with dark brown moting 90 900.0 6 End of Borehole @ 6.6m 900.0 900.0 900.0 7 End of Borehole @ 6.6m 900.0 900.0 7 No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 6.6m 900.0 9 900.0 900.0 900.0 10 900.0 900.0 900.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 1031/2011 DRAWING ND: B16 Page 101	=3 	CAND with trace to come play nearly graded medium	arainad		50	47				•••••••••••••••••••••••••••••••••••••••				=	
4 BS 900- 5 CLAY (TLL) - silty, some sand to sandy, trace gravel, moist, very stiff, too medum plastic, light brown, call and oxide staining, weathered 903 30 6 BB BB 90 900.0 6 CLAY (TLL) - silty, some sand to sandy, trace gravel, moist, very stiff, too medum plastic, light brown with dark brown moting 90 900.0 6 End of Borehole @ 6.6m 900.0 900.0 900.0 7 End of Borehole @ 6.6m 900.0 900.0 7 No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 6.6m 900.0 9 900.0 900.0 900.0 10 900.0 900.0 900.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 1031/2011 DRAWING ND: B16 Page 101	E	moist, compact, brown, coal staining, weathered, o	ccasional	\square	D2	1/									
 CLAY (TILL) - sity, some sand to sandy, trace gravel, moist, very stiff, low to medium plastic, brown to grey brown, coal and motiling some sand, medium plastic, light brown with dark brown motiling End of Borehole @ 6.6m End of Borehole @ 6.6m No Seesage or Sloughing on Completion Indicated BVC Ripe Installed to 6.6m No Seesage or Sloughing on Completion Indicated BVC Ripe Installed to 6.6m No Seesage or Sloughing on Completion Solution and the second state of the secon	Ē	high plastic clay inclusions			B5									910.0	
5 CLAY (TILL) - silty, some sand to sandy, trace gravel, moist, very stiff, low to medium plastic, town to grey brown, coal and oxide staining, weathered 30 13.2 999.0.3 6 End of Borehole @ 6.6m B8 30 13.2 908.0.3 72 Solide PVC Pipe Installed to 6.5m 909.0.3 909.0.3 73 End of Borehole @ 6.6m 909.0.3 909.0.3 74 Solide PVC Pipe Installed to 6.5m 909.0.3 75 Solide PVC Pipe Installed to 6.5m 909.0.3 9 909.0.3 909.0.3 10 909.0.3 909.0.3 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m 11.1 11.5 EBA Engineering Consultants Ltd. REVEWED BY: TC COMPLETE: 10/31/2011	<u> </u>														
stit, low to medium plastic, brown to grey brown, coal and oxide staining, weathered some sand, medium plastic, light brown with dark brown mottling End of Borehole @ 6.6m No Seepage or Sloughing on Completion Indicated Water Level Measured November 21, 2011 9 06.0_ 9 9 10 10 906.0_ 9 9 10 10 906.0_ 9 9 10 10 906.0_ 11 11 1.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m RevieweD BY: TC COMPLET: 10/31/2011 DGGED BY: JKM COMPL	E				B6		9.6	•						-	
stit, low to medium plastic, brown to grey brown, coal and oxide staining, weathered some sand, medium plastic, light brown with dark brown mottling End of Borehole @ 6.6m No Seepage or Sloughing on Completion Indicated Water Level Measured November 21, 2011 9 06.0_ 9 9 10 10 906.0_ 9 9 10 10 906.0_ 9 9 10 10 906.0_ 11 11 1.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m RevieweD BY: TC COMPLET: 10/31/2011 DGGED BY: JKM COMPL	Ē													909.0	
stif, low to medium plastic, light brown with dark brown motting a some sand, medium plastic, light brown with dark brown motting End of Borehole @ 6.6m No Seepage or Sloughing on Completion Store PVC Pice Inalled to 6.6m No Seepage or Sloughing on Completion Store PVC Pice Inalled to 6.6m No Seepage or Sloughing on Completion Store PVC Pice Inalled to 6.6m Indicated Water Level Measured November 21, 2011 906.0 9 9 10 11 11.5 EBA Engineering Consultants Ltd LOGGED BY: JKM COMPLETION DEPTH: 6.6m RevieweD BY: TC COMPLETE: 10/31/2011 DA LOGGED BY: JKM COMPLETE: 10/31/2011 Page 1 of 1 Complete: 10/31/2011 Page 1 of 1 Page 1 of 1 Complete: 10/31/2011 Page 1 of 1 Page 1 of 1	Ē_ 5	CLAY (TILL) - silty, some sand to sandy, trace gravel, mo	ist. verv	-12	D3	30									
asome sand, medium plastic, light brown with dark brown mottling B8 bsome sand, medium plastic, light brown with dark brown mottling 908.0.1 csome sand, medium plastic, light brown with dark brown mottling 908.0.1 csome sand, medium plastic, light brown with dark brown mottling 908.0.1 region of Borehole @ 6.6m 909.0.1 No. Seepage or Sloughing on Completion Statled to 6.6m 909.0.1 Indicated Water Level Measured November 21, 2011 906.0.1 9 909.0.1 10 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11 909.0.1 11.1 909.0.1 11.1 909.0.1 11.1 909.0.1 11.1 909.0.1 11.1	E	stiff, low to medium plastic, brown to grey brown, o			B7									-	
6 Incluing D4 30 Image: Solution of Borehole @ 6.6m Image: Solution of Borehole @ 6.6m <td>-</td> <td></td> <td>'n</td> <td></td> <td>B8</td> <td></td> <td>13.2</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-		'n		B8		13.2	•							
End of Borehole @ 6.6m 90000 No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 6.6m 90000 10 90000 9 90000 10 90000 11 90000 110 90000 111 90000 110 90000 111 90000 110 90000 111 90000 111 90000 110 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000 111 90000	Ē 6	mottling												900.0_=	
End of Borehole @ 6.6m No Seepage or Sloughing on Completion Stoted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 9 10 11 11.5 EBA Engineering Consultants Ltd. Indicate Uter Level Measured November 21, 2011 10 11 11.5	E			\bigtriangledown	ы	20						_		-	
Pre- source No Seepage or Sloughing on Completion Stotted PVC Pipe Installed to 6.6m 10 906.0_ 9 906.0_ 905.0_ 9 906.0_ 905.0_ 10 906.0_ 905.0_ 11 906.0_ 905.0_ 11 906.0_ 905.0_ 11 906.0_ 905.0_ 10 906.0_ 905.0_ 11 906.0_ 905.0_ 11 906.0_ 905.0_ 11 906.0_ 905.0_ 11 906.0_ 905.0_ 11 906.0_ 905.0_ 11 906.0_ 905.0_ 11 906.0_ 905.0_ 11 906.0_ 906.0_ 11 906.0_ 906.0_ 11 906.0_ 906.0_ 11 906.0_ 906.0_ 11 906.0_ 906.0_ 11 906.0_ 906.0_ 11 906.0_ 906.0_ 11 906.0_ 906.0_ 11 906.0_ 906.0_	E y			\square	D4	30									
10 9 906.0	F 75 No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 6.6m														
8 2011 906.0 9 905.0 905.0 9 906.0 905.0 10 904.0 903.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	- ' [‡]	Slotted PVC Pipe Installed to 6.6m												11/	
- 8 9 - 9 905.0_ - 10 904.0_ - 11 903.0_ - 11 <td>Ē.</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>. =</td>	Ē.	· · · · · · · · · · · · · · · · · · ·												. =	
9 9 10 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	Ē,													906.0	
9 1 1	E 8									••••			•••••••••••••••••••••••••••••••••••••••		
9 1 1	È.														
10 11 11.5 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	E													905.0_	
10 903.0_ 11 11.5 11.5 EBA Engineering Consultants Ltd. REVIEWED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	<u> </u>									••••				=	
10 903.0_ 11 11.5 11.5 EBA Engineering Consultants Ltd. REVIEWED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	Ē														
11 903.0_ 11.5 Interviewed BY: JKM EBA Engineering Consultants Ltd. LOGGED BY: JKM REVIEWED BY: TC COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	Ē													904.0	
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	E_ 10														
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	E														
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	Ē								903.0						
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	E_ 11														
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1														-	
EBA Engineering Consultants Ltd. REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B16 Page 1 of 1	<u> </u>	9					OGGF	D BY IK	<u></u> М		COMPI		EPTH 6 P	i – – – Sm	
DRAWING NO: B16 Page 1 of 1	eb	EBA Engineering Cons	: L:	td.[F	REVIEV	VED BY:	TC								
							RAW	NG NO: E	316						

PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT:	STA	NTE		VSULT	ING LTD			PROJEC	t no I	BOREHOL	E NO.
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL M	ETH	IOD:	150mr	n SOL	ID STEM	AUGER		L12	101928	- 11BH017	
CITY:	LETHBRIDGE, AB	PROJEC	t ei	NGIN	IEER:	JIEJU	N ZHAO		E	LEVATIO	N: 913.6	m	
SAMF	PLE TYPE 📃 DISTURBED 🗌 NO RECOVE	RY 🔀	SPT			A	-CASING	SI SI	HELBY	TUBE	CORE		
BACK	FILL TYPE 🗾 BENTONITE 💽 PEA GRAVE	il []]]	SLO				ROUT	DI 🔀	RILL C	UTTINGS	SAND)	
			щ	SAMPLE NUMBER		ENT							
(E	SOIL		TYPE	NM	î	MOISTURE CONTENT					RD PENE	TRATION (N)	Elevation (m)
Depth (m)			Ш	Ξ	SPT (N)	če c				20		<u>60 80</u> D (kPa) ◆	atio
De	DESCRIPTION		SAMPLE	IPL	5 S	STUF	PLASTIC	M.C. LI	QUID	50	100 1	50 200	
			S/	SAN		MOI	20	40 60	80	100	200 3	N. (kPa) ▲ 00 400	
= 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, o												
Ē.	CLAY - silty, trace to some sand, damp to moist, very sti to high plastic, brown, white precipitates, occasion	if, medium al silt											913.0
Ē	pockets			B1		15.1	•				4		
<u> </u>	CLAY (TILL) - silty, some sand, trace gravel, damp to mo medium plastic, brown to grey brown, coal and oxi	oist, stiff, de specks,											
Ē	thin sand lenses			B2		12.1	•				A		=
Ē			\square	D1	12								912.0
E_ 2			\square	B3		11.8					· · · · · · · · · · · · · · · · · · ·		
E		- 0		-									-
F	light brown with dark brown mottling, sand pockets to	SOUUU		B4		13	••••		•••••••	•			911.0_
E 3													-
Ē			\mathbb{N}	D2	14								
-			\square						· · · · · · · · ·				910.0
E.				B5							A		=
E_ 4													-
E	300mm sand pocket			B6		12.5	•				A		
4 5 1 1 1 5	very stiff, brown to grey brown		\bigtriangledown	D 2	47								909.0
E 5			\square	D3	17								
E	some sand to sandy, low to medium plastic, oxide stai weathered	ning,		B7									=
Ē	stiff			B8		12.9					A		908.0
E 6													
E			\bigtriangledown	D4	15								
<u>-</u>			\square	04	15								907.0_
Ē ₇	End of Borehole @ 6.6m No Seepage or Sloughing on Completion		-										
E'	Slotted PVC Pipe Installed to 6.6m												
Ē.	Borehole Measured Dry November 21, 2011												906.0_
E													900.0
8							· · · · · · · · · · · ·		•••••••••••••••••••••••••••••••••••••••			[]]	
Ē													=
Ē									•••••••				905.0
E 9													. =
Ē													
F													904.0_
E 10									=				
F									1 -				
E_													903.0
Ē.												· · · · ·	
<u>-</u> 11 -								1 -					
F 11.5													<u> </u>
					D BY: JK					DEPTH: 6.6	ôm		
éb	EBA Engineering Con	sultai	าโร	s Li	τ α . <u>F</u>		NED BY:					/31/2011	
GEOTECH	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ			JKAWI	NG NO: E	517		Page 1	01 1				

PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT: STANTEC CONSULTING LTD.						PROJECT NO BOREHOLE NO.			
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL METHOD: 150mm SOLID STEM AUGER					ID STEM AUGER	L12101928 - 11BH018			
CITY:	LETHBRIDGE, AB	PROJEC	T EN	NGIN	IEER:	JIEJUN	N ZHAO	ELEVATION: 915.29m			
SAMF	PLE TYPE 📃 DISTURBED 🗌 NO RECOVE	RY 🔀	SPT			A	-Casing Sheli	BY TUBE CORE			
BACK	FILL TYPE 🗾 BENTONITE 📝 PEA GRAVE	L []]]	SLO				Rout 🔯 drill	CUTTINGS 🔅 SAND			
			ш	SAMPLE NUMBER		MOISTURE CONTENT					
(E	SOIL		TYPE	UME	î	ONT		■ STANDARD PENETRATION (N)	Elevation (m)		
Depth (m)	DESCRIPTION		Щ	Z	SPT (N)	ZE C		20 40 60 80 ◆ UNCONFINED (kPa) ◆	atior		
De	DESCRIPTION		SAMPLE	APLI	ц.	STUF	PLASTIC M.C. LIQUI	D 50 100 150 200	Eleva		
			Ś	SAN		MOI	20 40 60 80	▲ POCKET PEN. (kPa) ▲ 100 200 300 400	ш		
= 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, or								915.0		
E_	CLAY - silty, trace to some sand, damp, very stiff, mediur plastic, light brown to brown, white precipitates, silt										
Ē	moist, brown			B1		16.8	•				
<u>-</u> 1	trace sand, high plastic, heavy white precipitates								=		
Ē			_	B2		20.5		9	914.0		
Ē	CLAY (TILL) - silty, trace to some sand, trace gravel, moi medium to high plastic, light brown with dark brown	st, stiff, mottling,	\square	D1	14				Ξ		
	coal and oxide specks, thin sand lenses	-	\square	B3		12.6					
E	some sand to sandy, low to medium plastic, sand pock 50mm	ets to		БЭ		12.0		9	913.0_		
<u>-</u>	sandy, low plastic			B4		8.8			Ξ		
E 3											
Ē			\square	D2	12				 912.0		
E_			Д	DL							
E 👤	some sand, low plastic, brown with dark brown mottling staining, weathered	g, oxide		B5							
11/21/11									 111 111		
11/2				B6		15	•	9	91 <u>€</u> 0		
Ē	very stiff		\square						Ξ		
E 5			М	D3	16						
5 	occasional sand pockets to 20mm			B7				9	910.0_		
<u>–</u>				B8		14.3	•		=		
Ē 6									-		
Ē			\square						 909.0		
E_			М	D4	17						
E	End of Borehole @ 6.6m								_		
<u> </u>	No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 6.6m								Ξ		
E	Indicated Water Level Measured November 21,							9	908.0		
Ē	2011								Ξ		
E 8											
E								9	907.0_		
È-									Ξ		
E 9											
Εĭ								Q	 		
Ē.											
Ē											
<u> </u>									=		
Ē								9	905.0		
Ē									=		
E_ 11									-		
E ,								9	904.0_		
- 11.5	1				 		ED BY: JKM	COMPLETION DEPTH: 6.6m	-		
	EBA Engineering Cons	sultar	าts	: L:	td.		WED BY: TC	COMPLETE: 10/31/2011			
80	-						ING NO: B18	Page 1 of 1			
GEOTECH	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ I	BA.GDT 1/11/1	2								

PROJE	ECT: LANDS NORTH OF UPLANDS	CLIENT: STANTEC CONSULTING LTD.						PROJECT NO BOREHOLE NO.					
LOCAT	TION: NW 1/4 SEC 17-9-21 W4M	DRILL METHOD: 150mm S		n SOLI	ID STEM	AUGER		L1	210192	28 - 11BH01	19		
CITY: I	LETHBRIDGE, AB	PROJEC	TE	NGIN	EER:	JIEJUN	N ZHAO			ELEVATIO	DN: 915	5.75m	
SAMPL	LE TYPE 📃 DISTURBED 🗌 NO RECOVE		SPT			A-	-CASING		SHELB	BY TUBE	CC	RE	
BACKF	FILL TYPE 🗾 BENTONITE 🚺 PEA GRAVE	:L []]]	SLO				ROUT		DRILL	CUTTINGS	🔅 SA	ND	
			ш	SAMPLE NUMBER		MOISTURE CONTENT							
<u></u>	SOIL		TYPE	UME	î	ONT						NETRATION (N	Elevation (m)
Depth (m)			Щ	Z	SPT (N)	ZE C				20		60 80 NED (kPa) ◆	ation
De	DESCRIPTION		SAMPLE	1PLI	S	STUF	PLASTIC	M.C.	LIQUIE	50	100	150 200	
			Ś	SAN		MOI	20	40 60		▲ P0 100		PEN. (kPa) ▲ 300 400	
E 0	TOPSOIL - clay, silty, sandy, damp, dark brown, roots, o	rganics	-										
E	CLAY - silty, some sand, damp to moist, very stiff, mediu light brown to brown, white precipitates	im plastic,] 3
Ē				B1		18.2							915.0
	trace to some sand, moist, medium to high plastic, ligh with dark brown mottling, high plastic clay inclusion	nt brown ns, thinly											··· 3
Ē	laminated, heavy white precipitates moist, stiff			B2		22	•						
2	CLAY (TILL) - silty, some sand, trace gravel, moist, stiff,	medium	\neg	D1	15								914.0_
E 2	plastic, light brown with dark brown mottling, coal a	and oxide	\square	B3		18.8							
Ē	specks, thin sand lenses, white precipitates very stiff			DJ		10.0							-
<u>-</u>				B4		16.6	•					· · · · · · · · · · · · · · · · · · ·	
E_ 3													913.0
Ē			\square	D2	18								
E			А										3
Ē	sand pockets to 50mm			B5									912.0
4	some sand to sandy, low to medium plastic												··· =
Ē	sandy, damp, low plastic, oxide staining, weathered			B6		9.7	•					A	
Ē	· · · · · · · · · · · · · · · · · · ·		\square	_									911.0_
5	some sand, moist, medium plastic, brown to grey brow	vn	М	D3	26								3
Ē				B7									
E-				B8		12.8	•					A	
E ₆													910.0
Ē			\square										
E			\square	D4	27						.] 3
Ē	End of Borehole @ 6.6m												909.0
	No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 6.6m												Ξ
Ē	Borehole Measured Dry November 21, 2011												
Εl													908.0_
E_ 8													3
E													
E-													907.0_
E 9													907.0_
ΕI													
E													3
Ē,													906.0
E 10													=
ĒI													
Εl													905.0
E_ 11													Ξ
E - 11.5													
11.0						OGGE	D BY: JK	<u></u> М		COMP	LETIO	N DEPTH: 6	.6m
ebo	EBA Engineering Con	sultar	nts	: Li	td.[F	REVIEV	VED BY:	TC		COMP	LETE:	10/31/2011	
GEOTECHN	IICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ					RAWI	NG NO: E	319		Page 1	of 1		

PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT: STANTEC (NSULT	TING LTD.	PROJECT NO BOREHOLE NO.			
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL METHOD: 15				n SOL	ID STEM AUGER	L12101928 - 11BH020			
CITY:	Lethbridge, Ab	PROJEC	T EN	IGIN	EER:	JIEJU	N ZHAO	ELEVATION: 911.92m			
SAMP	LE TYPE DISTURBED 🛛 NO RECOVE	RY 🔀 S	SPT			A		BY TUBE CORE			
BACK	FILL TYPE 🗾 BENTONITE 📝 PEA GRAVE	L	SLOU				ROUT 🔂 DRILL	CUTTINGS 🔅 SAND			
			Щ	SAMPLE NUMBER		MOISTURE CONTENT			Ē		
(E	SOIL		Σ	M	Î	INO		STANDARD PENETRATION (N)	n (n		
Depth (m)	DESCRIPTION		Ц	Z Ш	SPT (N)	REC		20 40 60 80 ◆ UNCONFINED (kPa) ◆	atio		
De	DESCRIPTION		SAMPLE TYPE	JPL	S	STU	PLASTIC M.C. LIQUI		Elevation (m)		
			S	SAI		MO	20 40 60 80	100 200 300 400			
E	 TOPSOIL - clay, silty, sandy, damp, dark brown, roots, or CLAY - silty, trace sand, moist, very stiff, high plastic, bro 										
-	grey brown			B1		29			11		
				ы		29			911.0		
- ' -	CLAY (TILL) - silty, some sand, trace gravel, moist, stiff, coal and oxide specks, sand pockets	brown,		B2		14.1					
E	sand pockets to 30mm								1		
Ē			X	D1	8				910.0		
2	some sand to sandy, damp to moist, low to medium pl	astic	Ħ	B3		10.4	•				
E_				B4		11.8	•				
E											
- 3	very stiff		\square						909.0		
Ē			М	D2	18				1.1		
Ē	oxide staining, weathered			B5							
E 4				55					908.0		
Ē	some sand, medium plastic, brown with dark brown mo occasional high plastic clay inclusions, thin sand le			B6		11.2					
3 4 5			\square								
E_ 5			Х	D3	20				907.0		
E			Ē	B7					11		
<u>-</u>				B8		13.2			4.1		
E_ 6									906.0		
6			\square	_					111		
E_			Д	D4	21						
	End of Borehole @ 6.6m No Seepage or Sloughing on Completion								905.0		
7 	Slotted PVC Pipe Installed to 6.6m										
E_	Borehole Measured Dry November 21, 2011								- 41		
Ē									904.0		
- 8									504.0 <u> </u>		
Ē									1.1		
E											
- 9									903.0		
Ē											
-									111		
E_ 10									902.0		
Ē									-		
E											
E11									901.0_		
-											
- 11.5					1		ED BY: JKM	COMPLETION DEPTH: 6.6r			
éb	EBA Engineering Cons	sultar	nts	Lt	td.		WED BY: TC	COMPLETE: 10/31/2011	11		
							NG NO: B20	Page 1 of 1			
GEOTECH	VICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ	EBA.GDT 1/11/12	2								

PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT: STANTEC CO					ING LTD.		PROJECT NO BOREHOLE NO.			
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL METHOD: 150mm SOLID STEM A				ID STEM A	UGER	L12	101928 - 11BH021	1		
CITY:	LETHBRIDGE, AB	PROJEC	T EN	IGIN	EER:	JIEJUN	N ZHAO		ELEVATIO	N: 914.25m		
SAMP	LE TYPE 📃 DISTURBED 🗌 NO RECOVER	XY 🔀 S	SPT			A	-CASING	SHELI	BY TUBE	CORE		
BACK	FILL TYPE 🗾 BENTONITE 🛛 📝 PEA GRAVEL		SLOU	JGH		G	ROUT	🛛 drill	CUTTINGS	SAND		
			ш	ЗER		ENT					(
Ê			SAMPLE TYPE	SAMPLE NUMBER	Ŧ	MOISTURE CONTENT			STAND4	ARD PENETRATION (N)	Elevation (m)	
Depth (m)	SOIL		щ	z	SPT (N)	ы			20	40 60 80 CONFINED (kPa) ◆	tion	
Dep	DESCRIPTION		Μ	Ы	Ъ	TUR	PLASTIC	M.C. LIQUI	D 50	100 150 200	leva	
			SA	3AM		NOIS	20 4	• I 40 60 80	▲ PO 100	CKET PEN. (kPa) ▲ 200 300 400	ш	
= 0	└ TOPSOIL - clay, silty, sandy, damp, dark brown, roots, org			0,					100	200 000 400	914.0	
E	CLAY - silty, some sand, damp, very stiff, medium plastic, brown, white precipiates, occasional silt pockets	light										
				B1		11.5						
<u> </u>	trace to some sand, moist, medium to high plastic, brow	n to										
E	dark brown	11 10		B2		17.3	•			A	913.0	
E	CLAY (TILL) - silty, some sand, trace gravel, moist, stiff, m	odium	\square	D1	40							
E 2	plastic, brown with dark brown mottling, coal and oxid	de	\square		19							
E	specks, thin sand lenses, high plastic clay inclusions			B3		13.9					912.0_	
<u>-</u>				B4		16.8	•					
Ē,								· · · · · ·				
=3 	some sand to sandy, low to medium plastic		\square	D 2	40						911.0	
-			Д	D2	18						511.0_	
F	some sand, medium plastic			B5								
<u> </u>	and notices to 20mm			20								
3 3 5	sand pockets to 30mm			B6		14.1					910.0_	
-	oxide staining, weathered											
5			X	D3	17						1	
Ē				B7						A	909.0_	
E_				B8		13.3						
E				БО		15.5						
<u> </u>												
Ē			X	D4	17						908.0	
Ē	End of Borehole @ 6.6m		H									
E 7	No Seepage or Sloughing on Completion											
Ē	Slotted PVC Pipe Installed to 6.6m Borehole Measured Dry November 21, 2011										907.0_	
-												
E_ 8												
Ē											906.0_	
E												
Ē												
- 9									· [· · ·] · ·] · ·] · ·			
Ē											905.0	
Ē												
E 10												
E											904.0_	
E												
E11												
E ''											903.0_	
- 11.5											-	
	ERA Engineering Cons	ultor	\ +~		الم ا		D BY: JKM			ETION DEPTH: 6.	6m	
éb	EBA Engineering Cons	uildf	πS	L	.u . F		NED BY: TO NG NO: B2		COMPL Page 1	ETE: 10/31/2011		
GEOTECH	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ EE	BA.GDT 1/11/12	2		L	/11/11/1	ING INU. DZ	- 1	Taye I			

PROJ	ECT: LANDS N	IORTH OF UPLA	NDS	CLIENT:	STA	NTE	C CO	VSULT	ING LTD			PROJECT NO BOREHOLE NO.			
LOCA	TION: NW 1/4	SEC 17-9-21 W4	Μ	DRILL METHOD: 150mm SOLID STEM AUGER						L12	210192	8 - 11BH0	22		
CITY:	LETHBRIDGE	, AB		PROJEC	TE	NGIN	EER:	JIEJU	N ZHAO		E	ELEVATIO	N: 915	.79m	
SAMP	PLE TYPE	DISTURBED	NO RECOVE	RY 🔀	SPT			A	-CASING		SHELB		CO	RE	
BACK	FILL TYPE	BENTONITE	PEA GRAVE	L []]]	SLO			<u> </u>	ROUT	\square	DRILL (CUTTINGS	🔅 SAN	ND	
					ш	SAMPLE NUMBER		MOISTURE CONTENT							
Ê		SO	п		SAMPLE TYPE	NM	Î	ONT						ETRATION (N	Elevation (m)
Depth (m)					Ш	Ξ	SPT (N)	če c				20		60 80 IED (kPa) ◆	atio
Del		DESCRI	PTION		MP	1PLI	R	STUF	PLASTIC	M.C.	LIQUID	50	100	150 200	leva
					S	SAN		MOIS	20	40 60	I 80	▲ PC 100	CKET P 200	EN. (kPa) ▲ 300 400	
= 0		, silty, sandy, moist,			_										=
E_	CLAY - silty, so light brow	me sand, damp to mo n to grey brown, silt p	oist, medium plastic, pockets	very stiff,											ΞΞ
Ē	-					B1		18.9	•				N		915.0
<u>-</u> 1	trace sand, r white precipi	noist, stiff, high plasti tates	c, brown												<u>-</u>
Ē						B2		24.3					•		: -
Ē					∇	D1	12								914.0
E 2	CLAY (TILL) - s	silty, some sand to sa	ndy, trace gravel, mo	ist, stiff,	-	B3	12	14.2							
Ē	oxide spe	plastic, brown with da ecks, thin sand lenses	rk brown mottling, cc s, white precipitates	al and		БЭ		14.2							
-			· · ·			B4		12.7	•				.		
- - 3															913.0
					\bigtriangledown	D2	13			••••			······ · · · · · ·	•••••••••••••••••••••••••••••••••••••••	
E_					\square		10						: : : :		I
E						B5									912.0_
_ 4	very stiff												· · · · · · · · · · · · · · · · · · ·		
E	vory sun					B6		14.5					: : :		
Ē															911.0_
E 5	light brown w	<i>i</i> ith dark brown mottli	00		Х	D3	21								911.0
E			ng			B7									
È-						B8		14.2	•						
È,															910.0
E 6															
E					Х	D4	19								
E		orehole @ 6.6m			ſ				: : :				: : :		909.0
_ 7	No Seepage of Slotted PVC P	r Sloughing on Compl ipe Installed to 6.6m	letion												
E		sured Dry November 2	21, 2011												
Ē															908.0
E_ 8															900.0
															-
<u>-</u>															
- 9															907.0
- 3										•••••••••••••••••••••••••••••••••••••••				••••	
È															
È													· · ·		906.0_
10										· · · · · · · · · · · · · · · · · · ·					
È															
Ē															005 0 -
E 11															905.0
È															_
- 11.5									D BY: JK	<u> </u>	: :			NDEPTH:	<u> </u>
éb	EBA	Engineer	ina Cons	sultar	nt.s	s / :	td╠		VED BY:					10/31/2011	
600									NG NO: E			Page 1			
GEOTECH	NICAL L12101928 NORT	H OF UPLANDS SUBDIVISI	ON GEOTECHNICAL.GPJ	EBA.GDT 1/11/1	2										

LICATION INV 14 SEC 179-21 WMM DRILL METHOD: 150mm SOLD STEM AUGER LI201028 119H023 SAMPLE TYPE DISTURSED A PROJECT ENGINEER. LENN 24M0 ELEVATION: 96 76m SAMPLE TYPE BENTOME S PARAMEL I SOUGH () SHELPY TUBE CORE BACKFLIL TYPE BENTOME S SOLL SOLL SOLL SOLL DESCRIPTION SOL SOLL DESCRIPTION SOL SOLL DESCRIPTION SOL SOLL DESCRIPTION SOL SOL DESCRIPTION SOL SOL DESCRIPTION SOL SOL DESCRIPTION SOL DESCRIPTION SOL DESCRIPTION S SOL DESCRIPTION S S SOL DESCRIPTION S S SOL DESCRIPTION S S S SOL DESCRIPTION S S S S S S S S S S S S S S S S S S S	PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT: STANTEC CONSULTIN					ONSULTING LTD. PROJECT NO BOREHOL				EHOLE	E NO.		
SAMPLE TYPE CORE BACKFILL TYPE CORE BACKFILL TYPE Deprovint CORE SOIL Conduct	LOCA	TION: NW 1/4 SEC 17-9-21 W4M						AUGER		L1:	210192	8 - 11B	BH023		
BACKFILL TYPE ENTONITE PLAGRAVEL I COUNT CONSTRUCTION CONTRACTOR OF CONT	CITY:	LETHBRIDGE, AB	PROJEC	T EN	NGIN	EER:	JIEJUN	N ZHAO		E	ELEVATIO	N: 916	.76m		
End SOIL DESCRIPTION Bit Hype Bit Bit Bit Hype Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit	SAMF	LE TYPE 📃 DISTURBED 🗌 NO RECOVI	ERY 🔀	SPT			A	-CASING		SHELB	Y TUBE	CO	RE		
0 0 10050L-disy.sity, seedy, see	BACK	FILL TYPE 📕 BENTONITE 🛛 📝 PEA GRAVE	EL []] ;	SLOI	JGH		G	ROUT	\square	DRILL (CUTTINGS	🔅 SAN	١D		
0 0 10050L-disy.sity, seedy, see				ш	ER		INT								
0 0 10050L-disy.sity, seedy, see	Ê	201		F	IMB	Â	ONTE				STAND	ARD PEN	IETRATIC	N (N)	E)
0 0 10050L-disy.sity, seedy, see	th (Щ	Z	∠)	С Ш								tion
0 0 10050L-disy.sity, seedy, see	Dep	DESCRIPTION		MPI	Ы	SР	TUR	PLASTIC	M.C.	LIQUID					еvа
0 0 10050L-disy.sity, seedy, see				SA	AM		IOIS	H	•		▲ PC				Ξ
CLAY sity, trice is one sand, note, sitt, medum to high consists bown toge yours, while preclutates consists bown toge yours, while preclutates consists bown toge yours, main frace-grave, most, stiff, medum preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while preclutates consists bown, coll and oxide specks, sind lenses, while and bown, b	- 0	☐ TOPSOIL - clay, silty, sandy, damp, dark brown, roots, o	rganics /		S		2	20	40 60	80	100	200	300 4	00	
Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown mottling, high plastic clay indusions Some sand, medium plastic, light brown Some sand, medi	E	CLAY - silty, trace to some sand, moist, stiff, medium to													III
Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown mottling, high plastic clay indusions Some sand, medium plastic, light brown Some sand, medi	Ē				B1		19.3	E é E		· · · · · · · · · · · · · · · · · · ·		▲ E E			916.0
Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown mottling, high plastic clay indusions Some sand, medium plastic, light brown Some sand, medi	<u>E</u> 1													· · · · · · · · · · · · · · · · · · ·	
Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown mottling, high plastic clay indusions Some sand, medium plastic, light brown Some sand, medi	E	CLAY (TILL) - silty, some sand, trace gravel, moist, stiff,	medium		B2		14.7	•							
Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown mottling, high plastic clay indusions Some sand, medium plastic, light brown Some sand, medi	E_	plastic, brown, coal and oxide specks, sand lenses	s, white												-
Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand to sandy, low to medium plastic Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown with dark brown mottling, high plastic clay indusions Some sand, medium plastic, light brown mottling, high plastic clay indusions Some sand, medium plastic, light brown Some sand, medi	E	precipitates		X	D1	13									915.0_
 some sand to sandy, low to medium plastic some sand to sandy, low to medium plastic some sand, medium plastic some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand, medium plastic, light brown with dark brown some sand brown with dark	<u></u> 2	damp, verv stiff			B3		11.2			÷					
5 B8 131 912.0 6 B8 131 911.0 7 Mo Seepage or Stoughing on Completion Stoted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 18 911.0 8 9 9 9 9 908.0 9 9 908.0 9 908.0 9 10 11 11 909.0 9 908.0 9 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY. JKM COMPLETION DEPTH.6.6m REVEWED BY: TC COMPLETION DEPTH.6.6m COMPLETION DEPTH.6.6m Page 1 of 1	E														
5 B8 131 912.0 6 B8 131 911.0 7 Mo Seepage or Stoughing on Completion Stoted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 18 911.0 8 9 9 9 9 908.0 9 9 908.0 9 908.0 9 10 11 11 909.0 9 908.0 9 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY. JKM COMPLETION DEPTH.6.6m REVEWED BY: TC COMPLETION DEPTH.6.6m COMPLETION DEPTH.6.6m Page 1 of 1	F	some sand to sandy, low to medium plastic			B4		10.3			······································			. A	· · · · · · · · · · · · · · · · · · ·	014.0
5 B8 131 912.0 6 B8 131 911.0 7 Mo Seepage or Stoughing on Completion Stoted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 18 911.0 8 9 9 9 9 908.0 9 9 908.0 9 908.0 9 10 11 11 909.0 9 908.0 9 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY. JKM COMPLETION DEPTH.6.6m REVEWED BY: TC COMPLETION DEPTH.6.6m COMPLETION DEPTH.6.6m Page 1 of 1	F 3														914.0
5 B8 131 912.0 6 B8 131 911.0 7 Mo Seepage or Stoughing on Completion Stoted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 18 911.0 8 9 9 9 9 908.0 9 9 908.0 9 908.0 9 10 11 11 909.0 9 908.0 9 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY. JKM COMPLETION DEPTH.6.6m REVEWED BY: TC COMPLETION DEPTH.6.6m COMPLETION DEPTH.6.6m Page 1 of 1	Ē	brown with dark brown mottling		\square	ר2	19									-
5 B8 131 912.0 6 B8 131 911.0 7 Mo Seepage or Stoughing on Completion Stoted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 18 911.0 8 9 9 9 9 908.0 9 9 908.0 9 908.0 9 10 11 11 909.0 9 908.0 9 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY. JKM COMPLETION DEPTH.6.6m REVEWED BY: TC COMPLETION DEPTH.6.6m COMPLETION DEPTH.6.6m Page 1 of 1	E			Д	52					: 				: 	
5 B8 131 912.0 6 B8 131 911.0 7 Mo Seepage or Stoughing on Completion Stoted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 18 911.0 8 9 9 9 9 908.0 9 9 908.0 9 908.0 9 10 11 11 909.0 9 908.0 9 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY. JKM COMPLETION DEPTH.6.6m REVEWED BY: TC COMPLETION DEPTH.6.6m COMPLETION DEPTH.6.6m Page 1 of 1	E	oxide staining, weathered			B5								▲		913.0_
5 B8 131 912.0 6 B8 131 911.0 7 Mo Seepage or Stoughing on Completion Stoted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 18 911.0 8 9 9 9 9 908.0 9 9 908.0 9 908.0 9 10 11 11 909.0 9 908.0 9 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY. JKM COMPLETION DEPTH.6.6m REVEWED BY: TC COMPLETION DEPTH.6.6m COMPLETION DEPTH.6.6m Page 1 of 1	_ 4	-	4/0							···· · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-
5 B8 131 912.0 6 B8 131 911.0 7 Mo Seepage or Stoughing on Completion Stoted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 18 911.0 8 9 9 9 9 908.0 9 9 908.0 9 908.0 9 10 11 11 909.0 9 908.0 9 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY. JKM COMPLETION DEPTH.6.6m REVEWED BY: TC COMPLETION DEPTH.6.6m COMPLETION DEPTH.6.6m Page 1 of 1	Ę		WH		R6		11								
5 03 35 6 6 72 End of Borehole (0,6.6m 72 No Seepage or Sloughing on Completion 9 10 9 9 10 9 9 11 900.0_ 9 11 907.0_ 9 11 907.0_ 9 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m Reviewed BY: TC COMPLETION DEPTH: 6.6m Reviewed BY: TC COMPLETION DEPTH: 6.6m	F				50									· · · · · · · · · · · · · · · · · · ·	
6 B7 B8 13.1 911.0. 6 Mo Seepage or Sloughing on Completion Stotled PVC Pipe Installed to 6.6m 9180. 9180. 8 9 9 9 9 9 9 908.0. 9 10 907.0. 907.0. 907.0. 907.0. 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m EVENUE EVENUE DV.T.C COMPLETION DEPTH: 6.6m Reviewed BY: TC COMPLETION DEPTH: 6.6m Reviewed BY: TC COMPLETION DEPTH: 6.6m	Ë,			X	D3	35									912.0
6 Image: Second Sec	E °			\square	B7										-
6 Image: Second Sec	E												: :		
6 End of Borehole @ 6.6m 9 71 End of Borehole @ 6.6m 9 No Seepage or Sloughing on Completion Slotted PVC Pipe Installed to 6.6m 9 8 9 909.0.1 9 909.0.1 909.0.1 10 909.0.1 909.0.1 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM. COMPLETICION DEPTH: 6.6m EVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: E23 Page 1 of 1	F				B8		13.1	•				A			911.0
End of Borehole @ 6.6m 91E0 No Seepage or Sloughing on Completion 91E0 Stoted PVC Pipe Installed to 6.6m 9908.0 Indicated Water Level Measured November 21, 2011 908.0 9 908.0 10 907.0 11 907.0 11 906.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11.1.5 EBA Engineering Consultants Ltd. REVIEWED BY: JKM COMPLET: 10/31/2011 Page 1 of 1 906.0	E 6														-
End of Borehole @ 6.6m 91E0 No Seepage or Sloughing on Completion 91E0 Stoted PVC Pipe Installed to 6.6m 9908.0 Indicated Water Level Measured November 21, 2011 908.0 9 908.0 10 907.0 11 907.0 11 906.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11 907.0 11.1.5 EBA Engineering Consultants Ltd. REVIEWED BY: JKM COMPLET: 10/31/2011 Page 1 of 1 906.0	Ē			\square	D4	18				· · · ·					11
7 No Seepage or Sloughing on Completion Stoted PVC Pipe Installed to 6.6m 9 9 9 9 9 9 9 9 10 908.0_ 11 907.0_ 11 907.0_ 11 906.0_ 11 906.0_ 11 907.0_ 11.5 EBA Engineering Consultants Ltd. REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	F Ţ			Д	5.										▼
Soluciated Water Level Measured November 21, 2011 909.0 9 9 9 908.0 9 909.0 10 907.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	21/1			-											
8 2011 909.0 9 908.0 908.0 10 907.0 907.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETI: 10/31/2011 DRAWING NO: B23 Page 1 of 1	E (É	Slotted PVC Pipe Installed to 6.6m								: : : : :				· · · · · · · · · · · · · · · · · · ·	11/
8 9 9 909.0 10 908.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	E														
- 8 9 - 9 908.0_ - 10 907.0_ - 11 906.0_ - 11 <td>Ē</td> <td>2011</td> <td></td> <td>909.0_</td>	Ē	2011													909.0_
9 9 9 907.0_ 10 907.0_ 907.0_ 11 11.5 906.0_ 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	E 8														-
9 9 9 907.0_ 10 907.0_ 907.0_ 11 11.5 906.0_ 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	E														1
9 9 9 907.0_ 10 907.0_ 907.0_ 11 11.5 906.0_ 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	E												•••	••••••	
10 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	É,														908.0
10 906.0_ 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	F 9														=
10 906.0_ 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	Ę														
10 906.0_ 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	Ē														907.0 -
E 11 11.5 EBA Engineering Consultants Ltd. REVIEWED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	E 10													· · · · · · · · · · · · · · · · · · ·	1
E 11 11.5 EBA Engineering Consultants Ltd. REVIEWED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	E														
E 11 11.5 EBA Engineering Consultants Ltd. REVIEWED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	È-									ļ. i. i					-
11.5 LOGGED BY: JKM COMPLETION DEPTH: 6.6m EBA Engineering Consultants Ltd. REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	ŧ														906.0_
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	F ¹¹														
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1	E 11.5														
EBA Engineering Consultants Ltd. REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B23 Page 1 of 1			. .			L					COMP		N DEPT	H: 6.6	m
DRAWING NO: B23 Page 1 of 1	éb	EBA Engineering Con	sultar	nts	: Li	td.[F	REVIEV	NED BY:	ТС		COMP	LETE: [^]			
							RAWI	NG NO: E	323		Page 1	of 1			

PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT: STANTEC CONSULTING LTD.								PROJECT NO BOREHOLE NO.			
LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL METHOD: 150mm SOLID STEM AUGER					AUGER		L12	101928	- 11BH024		
CITY:	Lethbridge, Ab	PROJEC	T EN	IGIN	EER:	JIEJUN	I ZHAO		EL	EVATION	N: 916.3	7m	
SAMF	PLE TYPE DISTURBED NO RECOVE	RY 🔀 S	SPT			A	CASING			TUBE	COR	=	
BACK	FILL TYPE 🗾 BENTONITE 🚺 PEA GRAVE	L []] 8	SLOU				ROUT		LL CL	JTTINGS 🤅	SANE SANE)	
			ш	SAMPLE NUMBER		MOISTURE CONTENT							Ē
(E)	SOIL		Σ	MU	ĵ,	INOC				STANDA 20			Elevation (m)
Depth (m)	DESCRIPTION		Ч	Щ	SPT (N)	RE (CONFINE	60 80 ED (kPa) ◆	atio
ð			SAMPLE TYPE	MPL	S	ISTL	PLASTIC	M.C. LIQ	UID	50	100 1	<u>50 200</u> N. (kPa) ▲	Ele
			S	SA		о М	20	40 60 8	0	100		400	_
= 0	 TOPSOIL - clay, silty, sandy, damp, dark brown, roots, or CLAY - silty, trace to some sand, moist, stiff, medium to I 												916.0
-	plastic, light brown with dark brown mottling white precipitates	0		B1		14.3	•				▲ : : : : : : : : : : : : : : : : : : :		-
E 1	thin silt lenses												
				B2		24.2	•				A		915.0
-	CLAY (TILL) - silty, some sand, trace gravel, moist, stiff,	medium	\mathbb{H}						; ; ; ;				=
E_ 2	plastic, light brown with dark brown mottling, coal a specks, occasional high plastic clay inclusions	na oxide	М	D1	14								
Ē	damp to moist, occasional claystone fragments			B3		14	•						
-				B4		11.1	•		: : · · : · ·				914.0
E_ 3													
			\square	D2	15								=
Ē.			А	52	10								913.0
Ē	slightly laminated			B5									
<u> </u>	very stiff, occasional sand pockets to 20mm												-
3 				B6		13.9	•				4	N I I I	912.0
E			\square	D3	20								=
5			\square	B7	20								-
F	brown with dark brown mottling												₩1.0_
11/21/11 ▲				B8		11.4	•						11/21/11
<u></u> 6≠													11/
_			М	D4	17								910.0
<u>-</u>	End of Borehole @ 6.6m		H										=
E 7	No Seepage or Sloughing on Completion												
	Slotted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21,												909.0
Ē	2011												
<u> </u>													
E E													908.0
-											···		
E 9													-
Ē													907.0
È.									· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·		301.0_
E10													
Ē													
Ē.													906.0
Ē.													
E 11 E													=
E - 11.5												· · · · ·	905.0
	ERA Engineering Con	sultar	nta	. , .	بط [_]		D BY: JK					DEPTH: 6.6	im
éb	EBA Engineering Cons	suital	nS		. u . - -		<u>ved by:</u> Ng No: E			Page 1)/31/2011	
GEOTECH	NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL.GPJ	EBA.GDT 1/11/12	2			/1 \/~\ \/	NO NO. E	JL7		Ti aye Ti			

1	PROJ	ECT: LANDS NORTH OF UPLANDS	CLIENT:	STA	NTE	C CO	ISULT	ING LTD			PROJECT NO BOREHOLE NO.			
SAMPLE TYPE CORE BACKFUL TYPE CORE BACKFUL TYPE CORE SOUL Core SOUL Core SOUL Core Core SOUL Core Core Core SOUL Core Core Core SOUL Core Core Core SOUL Core Core Core Core Core <th< td=""><td>LOCA</td><td>TION: NW 1/4 SEC 17-9-21 W4M</td><td colspan="6">DRILL METHOD: 150mm SOLID STEM AUGER</td><td>AUGER</td><td></td><td>L12</td><td>210192</td><td>8 - 11BH02</td><td>25</td></th<>	LOCA	TION: NW 1/4 SEC 17-9-21 W4M	DRILL METHOD: 150mm SOLID STEM AUGER						AUGER		L12	210192	8 - 11BH02	25
EACKFILL TYPE ENTONITE PEARONIE PLATIC NUM CONTROL STATUS FOR AND C	CITY:	LETHBRIDGE, AB	PROJEC	TEN	NGIN	EER:	JIEJUN	N ZHAO		E	LEVATIO	N: 913.	.6m	
Email SOIL DESCRIPTION Email	SAMF		RY 🔀	SPT			A	-CASING			L		RE	
0 0 TOPSOL: day, silly, careb, sore sam, ords, sill, model on bigh passic, troom, nots, sill, model on the passic, troom, not and consequences, the passic day inclusions 913.0. 2 CLAY (TILL) sity, these to some sam, these grawl, model, saft, medium to bigh passic, troom, not and consequences, the passic day inclusions 911.0. 3 some sand, wey sift, medium plastic D2 18 4 staff staff 911.0. 53 staff staff staff 54 staff staff staff 55 staff staff staff 6 troown staff staff 7 State day C.Pape installed to Some completion staff 9 staff staff staff 10 staff staff staff 11 staff staff staff 10 staff staff staff <td>BACK</td> <td>FILL TYPE BENTONITE PEA GRAVE</td> <td>L []]]</td> <td>SLOU</td> <td></td> <td></td> <td></td> <td>ROUT</td> <td>DF</td> <td>RILL CI</td> <td></td> <td>SAN</td> <td>ND</td> <td></td>	BACK	FILL TYPE BENTONITE PEA GRAVE	L []]]	SLOU				ROUT	DF	RILL CI		SAN	ND	
0 0 TOPSOL: day, silly, careb, sore sam, ords, sill, model on bigh passic, troom, nots, sill, model on the passic, troom, not and consequences, the passic day inclusions 913.0. 2 CLAY (TILL) sity, these to some sam, these grawl, model, saft, medium to bigh passic, troom, not and consequences, the passic day inclusions 911.0. 3 some sand, wey sift, medium plastic D2 18 4 staff staff 911.0. 53 staff staff staff 54 staff staff staff 55 staff staff staff 6 troown staff staff 7 State day C.Pape installed to Some completion staff 9 staff staff staff 10 staff staff staff 11 staff staff staff 10 staff staff staff <td></td> <td></td> <td></td> <td>щ</td> <td>3ER</td> <td></td> <td>ENT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				щ	3ER		ENT							
0 0 TOPSOL: day, silly, careb, sore sam, ords, sill, model on bigh passic, troom, nots, sill, model on the passic, troom, not and consequences, the passic day inclusions 913.0. 2 CLAY (TILL) sity, these to some sam, these grawl, model, saft, medium to bigh passic, troom, not and consequences, the passic day inclusions 911.0. 3 some sand, wey sift, medium plastic D2 18 4 staff staff 911.0. 53 staff staff staff 54 staff staff staff 55 staff staff staff 6 troown staff staff 7 State day C.Pape installed to Some completion staff 9 staff staff staff 10 staff staff staff 11 staff staff staff 10 staff staff staff <td>(E</td> <td>SOII</td> <td></td> <td>Ł</td> <td>ΠMI</td> <td>ź</td> <td>INO</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(E	SOII		Ł	ΠMI	ź	INO							
0 0 TOPSOL: day, silly, careb, sore sam, ords, sill, model on bigh passic, troom, nots, sill, model on the passic, troom, not and consequences, the passic day inclusions 913.0. 2 CLAY (TILL) sity, these to some sam, these grawl, model, saft, medium to bigh passic, troom, not and consequences, the passic day inclusions 911.0. 3 some sand, wey sift, medium plastic D2 18 4 staff staff 911.0. 53 staff staff staff 54 staff staff staff 55 staff staff staff 6 troown staff staff 7 State day C.Pape installed to Some completion staff 9 staff staff staff 10 staff staff staff 11 staff staff staff 10 staff staff staff <td>pth</td> <td></td> <td></td> <td>빌</td> <td>Ц</td> <td>PT (</td> <td>REO</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>atio</td>	pth			빌	Ц	PT (REO							atio
0 0 TOPSOL: day, silly, careb, sore sam, ords, sill, model on bigh passic, troom, nots, sill, model on the passic, troom, not and consequences, the passic day inclusions 913.0. 2 CLAY (TILL) sity, these to some sam, these grawl, model, saft, medium to bigh passic, troom, not and consequences, the passic day inclusions 911.0. 3 some sand, wey sift, medium plastic D2 18 4 staff staff 911.0. 53 staff staff staff 54 staff staff staff 55 staff staff staff 6 troown staff staff 7 State day C.Pape installed to Some completion staff 9 staff staff staff 10 staff staff staff 11 staff staff staff 10 staff staff staff <td>۵ </td> <td>DESCRIPTION</td> <td></td> <td>AMF</td> <td>MPL</td> <td>S</td> <td>ISTU</td> <td>PLASTIC</td> <td>M.C. LI</td> <td></td> <td></td> <td></td> <td></td> <td>Ele –</td>	۵	DESCRIPTION		AMF	MPL	S	ISTU	PLASTIC	M.C. LI					Ele –
CLAY - sity, trace to some sand, mest, stiff, medium bingin plastic day inclusions - some sand to sandy, low to medium plastic, brown to dark brown - cutar staining, weathered - order staining, weathered - some sand, very stiff, medium plastic - order staining, weathered - some sand, very stiff, medium plastic - brown - cocasional sand pockets - brown - brown - brown - brown - brown - brown - brown				လ	SAI		ОМ	20	40 60	80				
a	Ē			-										
a	<u> </u>	plastic, brown, white precipitates, occasional silt ler			B1		18.2							913.0_
a	Ē 1				ы		10.2							=
a	Ē		ак		B2		22.5							
a	E-													912.0_
a	È,	CLAY (TILL) - silty, trace to some sand, trace gravel, moi	st, stiff,	1XI	D1	8						· · · ·		
a	E 2	medium to high plastic, light brown with dark brown coal and oxide specks, thin sand lenses, high plast	i mottling, ic clav		B3		17.2	•	••••••	· · · · · · · · · · · · · · · · · · ·				
3 some sand, very stiff, medium plastic D2 18 4 stiff B6 13 55 brown D3 13 6 trace free water D4 10 7 Sepage and Stouphing from 6 0m on Completion Slotted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 D4 10 9 9 905.0 905.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m Reviewed DY: TC REVIEWED BY: TC COMPLETION DEPTH: 6.6m Reviewed DY: TC D2 Page 1 d1	È_	inclusions	· · · ,		B4		14.2	•				A		0110
stiff	Ē	oxide staining, weathered												311.0
stiff	=_ 3 -	some sand, very stiff, medium plastic		\square	50							· · · · · · · · · · · · · · · · · · ·		_
stiff	Ē			Д	D2	18								
stiff	Ē				B5									910.0_
6 trace free water B8 10 908.0 7 End of Borehole @ 6.6m 907.0 907.0 Seepage and Skupping from 6.0m on Completion Slotted PVC Pipe Installed to 6.6m 907.0 8 908.0 907.0 907.0 9 9 907.0 907.0 10 9 907.0 907.0 9 9 9 9 10 9 9 9 11 11 9 9 11 11.5 11 9 11 11.5 11.0 10 11 11.5 11.0 10 11 11.0 10 9 11 11.0 10 9 11 11.0 10 9 11 11.0 10 9 11 11.0 10 10 11 11.0 10 10 11 11.0 10 10 11 11.0 10 10 10 10 10	_ 4													_
6 trace free water B8 10 908.0 7 End of Borehole @ 6.6m 907.0 907.0 Seepage and Skupping from 6.0m on Completion Slotted PVC Pipe Installed to 6.6m 907.0 8 908.0 907.0 907.0 9 9 907.0 907.0 10 9 907.0 907.0 9 9 9 9 10 9 9 9 11 11 9 9 11 11.5 11 9 11 11.5 11.0 10 11 11.5 11.0 10 11 11.0 10 9 11 11.0 10 9 11 11.0 10 9 11 11.0 10 9 11 11.0 10 10 11 11.0 10 10 11 11.0 10 10 11 11.0 10 10 10 10 10	E 🔻	stiff			B6		13.2	•				A		
6 trace free water B8 10 908.0 7 End of Borehole @ 6.6m 907.0 907.0 Seepage and Skupping from 6.0m on Completion Slotted PVC Pipe Installed to 6.6m 907.0 8 908.0 907.0 907.0 9 9 908.0 908.0 9 9 9 9 10 9 9 9 11 11.0 9 9 11 11.0 9 9 11 11.0 9 9 11 11.0 9 9 11 11.0 10 9 11 11.0 10 9 11 11.0 10 9 11 11.0 10 9 11 11.0 10 9 11 11.0 10 9 11 11.0 10 10 11 11.0 10 10 11 11.0 10 10 11 11.0 10	111			\square										<u>90</u>
6 trace free water B8 10 908.0 7 End of Borehole @ 6.6m 907.0 907.0 Seepage and Soughing from 6.0m on Completion Stituled tv OC Pipe Instilled to 6.6m 907.0 907.0 8 9 9 9 906.0 9 9 9 906.0 907.0 10 10 9 9 906.0 11 11.0 10 9 9 11 11.0 10 9 906.0 9 9 9 906.0 9 10 10 9 9 906.0 11 11.5 10 907.0 907.0 11 11.0 10 907.0 907.0 11 11.0 10 907.0 907.0 11 11.0 10 907.0 907.0 11 11.0 10 907.0 907.0 11 11.0 10 907.0 907.0 11 11.0 10 10 907.0 11 11.0 <td>5</td> <td> brown</td> <td></td> <td>М</td> <td>D3</td> <td>13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11/2</td>	5	brown		М	D3	13								11/2
- T Segage and Sugging form 6.0m on Completion Slotted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 906.0 - 8 9 - 9 905.0 - 10 904.0 - 11 904.0 - 11 903.0 - 11 EBA Engineering Consultants Ltd. - REVIEWED BY: TC COMPLETION DEPTH: 6.6m - REVIEWED BY: TC COMPLETIE: 10/31/2011 - 10 REVIEWED BY: TC COMPLETIE: 10/31/2011 - 11 DRAWING NO: B25 Page 1 of 1	Ē				B7						4			
- T Segage and Sugging form 6.0m on Completion Slotted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 906.0 - 8 9 - 9 905.0 - 10 904.0 - 11 904.0 - 11 903.0 - 11 EBA Engineering Consultants Ltd. - REVIEWED BY: TC COMPLETION DEPTH: 6.6m - REVIEWED BY: TC COMPLETIE: 10/31/2011 - 10 REVIEWED BY: TC COMPLETIE: 10/31/2011 - 11 DRAWING NO: B25 Page 1 of 1	-	occasional sand pockets			B8		15.8	•						908.0_
- T Segage and Sugging form 6.0m on Completion Slotted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 906.0 - 8 9 - 9 905.0 - 10 904.0 - 11 904.0 - 11 903.0 - 11 EBA Engineering Consultants Ltd. - REVIEWED BY: TC COMPLETION DEPTH: 6.6m - REVIEWED BY: TC COMPLETIE: 10/31/2011 - 10 REVIEWED BY: TC COMPLETIE: 10/31/2011 - 11 DRAWING NO: B25 Page 1 of 1	Ē 6													
- T Segage and Sugging form 6.0m on Completion Slotted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 906.0 - 8 9 - 9 905.0 - 10 904.0 - 11 904.0 - 11 903.0 - 11 EBA Engineering Consultants Ltd. - REVIEWED BY: TC COMPLETION DEPTH: 6.6m - REVIEWED BY: TC COMPLETIE: 10/31/2011 - 10 REVIEWED BY: TC COMPLETIE: 10/31/2011 - 11 DRAWING NO: B25 Page 1 of 1	E	trace free water		\square	Ы	10								
- T Segage and Sugging form 6.0m on Completion Slotted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 906.0 - 8 9 - 9 905.0 - 10 904.0 - 11 904.0 - 11 903.0 - 11 EBA Engineering Consultants Ltd. - REVIEWED BY: TC COMPLETION DEPTH: 6.6m - REVIEWED BY: TC COMPLETIE: 10/31/2011 - 10 REVIEWED BY: TC COMPLETIE: 10/31/2011 - 11 DRAWING NO: B25 Page 1 of 1	-			Д	D4	10								907.0_
Solted PVC Pipe Installed to 6.6m Indicated Water Level Measured November 21, 2011 996.0 996.0 906.0 9	F			-										
2011 906.0- 9 905.0- 9 904.0- 10 904.0- 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETIE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	Ē '	Slotted PVC Pipe Installed to 6.6m												
8 9 9 905.0 9 906.0 10 904.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	<u> </u>													906.0
9 10 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	Ë,													
9 9 904.0 10 904.0 904.0 11 903.0 903.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	Ē									· · · · · · · · · · · ·				··· -
9 9 904.0 10 904.0 904.0 11 903.0 903.0 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	Ē_													
10 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	Ē													
 10 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1 	F 9									•••				_
 10 11 11.5 EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1 	Ē													
11 11.5 11.5 EBA Engineering Consultants Ltd. REVIEWED BY: TC COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	E													904.0
EBA Engineering Consultants Ltd. BA Engineering Consultants Ltd. Reviewed BY: JKM COMPLETION DEPTH: 6.6m Reviewed BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	10													
EBA Engineering Consultants Ltd. BA Engineering Consultants Ltd. Reviewed BY: JKM COMPLETION DEPTH: 6.6m Reviewed BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	E													
11.5 LOGGED BY: JKM COMPLETION DEPTH: 6.6m EBA Engineering Consultants Ltd. REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	Ē													903.0
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	E 11													
EBA Engineering Consultants Ltd. LOGGED BY: JKM COMPLETION DEPTH: 6.6m REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	Ē,,													
EBA Engineering Consultants Ltd. REVIEWED BY: TC COMPLETE: 10/31/2011 DRAWING NO: B25 Page 1 of 1	<u> </u>	9				1	OGGF	D BY IK	<u></u> М		COMPI	ETION		 5.6m
DRAWING NO: B25 Page 1 of 1	eb	EBA Engineering Cons	sultar	nts	: Li	td.[F	REVIEV	VED BY:	TC		COMPI	LETE: 1		
		NICAL L12101928 NORTH OF UPLANDS SUBDIVISION GEOTECHNICAL GPJ I					RAWI	NG NO: E	325					

EBA FILE: L12101928 | JANUARY 2012 | ISSUED FOR USE

APPENDIX C APPENDIX C RECOMMENDED GENERAL DESIGN AND CONSTRUCTION GUIDELINES

CONSTRUCTION GUIDELINE

SHALLOW FOUNDATIONS

Design and construction of shallow foundations should comply with relevant Building Code requirements.

The term 'shallow foundations' includes strip and spread footings, mat slab and raft foundations.

Minimum footing dimensions in plan should be 0.45 m and 0.9 m for strip and square footings respectively.

No loose, disturbed or sloughed material should be allowed to remain in open foundation excavations. Hand cleaning should be undertaken to prepare an acceptable bearing surface. Recompaction of disturbed or loosened bearing surface may be required.

Foundation excavations and bearing surfaces should be protected from rain, snow, freezing temperatures, excessive drying and the ingress of free water before, during and after footing construction.

Footing excavations should be carried down into the designated bearing stratum.

After the bearing surface is approved, a mud slab should be poured to protect the soil and provide a working surface for construction, should immediate foundation construction not be intended.

All constructed foundations should be placed on unfrozen soils, which should be at all times protected from frost penetration.

All foundation excavations and bearing surfaces should be inspected by a qualified geotechnical engineer to check that the recommendations contained in this report have been followed.

Where over-excavation has been carried out through a weak or unsuitable stratum to reach into a suitable bearing stratum or where a foundation pad is to be placed above stripped natural ground surface such over-excavation may be backfilled to subgrade elevation utilizing either structural fill or lean-mix concrete. These materials are defined under the separate heading 'Backfill Materials and Compaction'.

FLOOR SLABS-ON-GRADE

All soft, loose or organic material should be removed from beneath slab areas. If any local 'hard spots' such as old basement walls are revealed beneath the slab area, these should be over-excavated and removed to not less than 0.9 m below underside of slab level. The exposed soil should be proof-rolled and the final grade restored by general engineered fill placement. If proof-rolling reveals any soft or loose spots, these should be excavated and the desired grade restored by general engineered fill placement. Proof-rolling should be carried out in accordance with the recommendations given elsewhere in this Appendix. The subgrade should be compacted to a depth of not less than 0.3 m to a density of not less than 98 percent Standard Proctor Maximum Dry Density (ASTM Test Method D698).

If, for economic reasons, it is considered desirable to leave low quality material in-place beneath a slab-ongrade, special ground treatment procedures may be considered, EBA could provide additional advice on this aspect if required.

A levelling course of 20 mm crushed gravel at least 150 mm in compacted thickness, is recommended directly beneath all slabs-on-grade. Alternatively a minimum thickness of 150 mm of pit-run gravel overlain by a minimum thickness of 50 mm of 20 mm crushed gravel may be used. Very coarse material (larger than 25 mm diameter) should be avoided directly beneath the slab-on-grade to limit potential stress concentrations within the slab. All levelling courses directly under floor slabs should be compacted to 100 percent of Standard Proctor maximum dry density.

General engineered fill, pit-run gravel and crushed gravel are defined under the heading 'Backfill Materials and Compaction' elsewhere in this Appendix.

The slab should be structurally independent from walls and columns supported on foundations. This is to reduce any structural distress that may occur as a result of differential soil movements. If it is intended to place any internal non-load bearing partition walls directly on a slab-on-grade, such walls should also be structurally independent from other elements of the building founded on a conventional foundation system so that some relative vertical movement of the walls can occur freely.

The excavated subgrade beneath slabs-on-grade should be protected at all times from rain, snow, freezing temperatures, excessive drying and the ingress of free water. This applies during and after the construction period.

A minimum slab concrete thickness of 100 mm is recommended. Control joints should be provided in all slabs. Typically for a 125 mm slab thickness; control joints should be placed on a 3 m square grid, should be sawn to a depth of one-quarter the slab thickness and have a width of approximately 3 mm.

Wire mesh reinforcement, 150 mm square grid, should be provided to reduce the possibility of uncontrolled slab cracking. The mesh should be adequately supported and should be located at mid-height of the slab with adequate cover.

CONSTRUCTION GUIDELINE

CONSTRUCTION EXCAVATIONS

Construction should be in accordance with good practice and comply with the requirements of the responsible regulatory agencies.

All excavations greater than 1.5 m deep should be sloped or shored for worker protection.

Shallow excavations up to about 3 m depth may use temporary sideslopes of 1H:1V. A flatter slope of 2H:1V should be used if groundwater is encountered. Localized sloughing can be expected from these slopes.

Deep excavations or trenches may require temporary support if space limitations or economic considerations preclude the use of sloped excavations.

For excavations greater than 3 m depth, temporary support should be designed by a qualified geotechnical engineer. The design and proposed installation and construction procedures should be submitted to EBA for review.

The construction of a temporary support system should be monitored. Detailed records should be taken of installation methods, materials, in situ conditions and the movement of the system. If anchors are used, they should be load tested. EBA can provide further information on monitoring and testing procedures if required.

Attention should be paid to structures or buried service lines close to the excavation. For structures, a general guideline is that if a line projected down, at 45 degrees from the horizontal from the base of foundations of adjacent structures intersects the extent of the proposed excavation, these structures may require underpinning or special shoring techniques to avoid damaging earth movements. The need for any underpinning or special shoring techniques and the scope of monitoring required can be determined when details of the service ducts and vaults, foundation configuration of existing buildings and final design excavation levels are known.

No surface surcharges should be placed closer to the edge of the excavation than a distance equal to the depth of the excavation, unless the excavation support system has been designed to accommodate such surcharge.

BACKFILL MATERIALS AND COMPACTION

Maximum density as used in this section means Standard Proctor Maximum Dry Density (ASTM Test Method D698) unless specifically noted otherwise. Optimum moisture content is as defined in this test.

"Landscape fill" material may comprise soils without regard to engineering quality. Such soils should be placed in compacted lifts not exceeding 300 mm and compacted to a density of not less than 90 percent of maximum density.

"General engineered fill" materials should comprise clean, inorganic granular or clay soils. "Select engineered fill" materials should comprise clean, well-graded granular soils or inorganic low plastic clay soils. Engineered fill materials should be placed in layers of 150 mm compacted thickness and should be compacted to 98 percent of maximum density.

Granular soils used for select engineered fills should consist of relatively clean, well graded, sand or mixture of sand and gravel (maximum size 75 mm).

Low to medium plastic clay with the following range of Atterberg limits is generally considered suitable for use as select engineered fill.

Liquid Limit	= 20 to 40%
Plastic Limit	= 10 to 20%
Plasticity Index	= 10 to 30%

Clay fill materials should be compacted at or slightly above the optimum moisture content.

"Structural fill" materials should comprise clean, well-graded inorganic granular soils. Such fill should be placed in compacted lifts not exceeding 150 mm and compacted to not less than 100 percent of maximum density.

Backfill adjacent to and above footings, abutment walls, basement walls, grade beams and pile caps or below highway, street or parking lot pavement sections and base courses should comprise "general engineered fill" materials as defined above.

Backfill below slabs-on-grade or where increased volumetric stability is desired should comprise "select engineered fill" materials as defined above.

Backfill supporting structural loads should comprise "structural fill" materials as defined above.

Exterior backfill adjacent to footings, foundation walls, grade beams and pile caps and within 300 mm of final grade should comprise inorganic clay "general engineered" fill as defined above. Such backfill should provide a relatively impervious surface layer to reduce seepage into the subsoil.

Backfill should not be placed against a foundation structure until the structure has sufficient strength to withstand the earth pressures resulting from placement and compaction. During compaction, careful observation of the foundation wall for deflection should be carried out continuously. Where deflections are apparent, the compactive effort should be reduced accordingly.

In order to reduce potential compaction induced stresses, only hand held compaction equipment should be used in the compaction of fill within 500 mm of retaining walls or basement walls.

Backfill materials should not be placed in a frozen state, or placed on a frozen subgrade. All lumps of materials should be broken down during placement.

Where the maximum-sized particles in any backfill material exceed 50 percent of the minimum dimension of the cross-section to be backfilled, such particles should be removed and placed at other more suitable locations on-site or screened off prior to delivery to site.

Bonding should be provided between backfill lifts, if the previous lift has become desiccated. For fine-grained materials the previous lift should be scarified to the base of the desiccated layer, properly moisture-conditioned and recompacted and bonded thoroughly to the succeeding lift. For granular materials, the surface of the previous lift should be scarified to about a 75 mm depth followed by proper moisture-conditioning and recompaction.

Suggested specifications for various backfill types are presented below.

"Pit-Run gravel" and fill sand shall be reasonably well graded and should conform to the following gradings:

	PERCENT PASSING BY WEIGHT								
SIEVE SIZE	PIT RUN GRAVEL (A.T. D6-C80)	FILL SAND							
80.0 mm	100								
50 mm	55-100								
25 mm	38 – 100	100							
16 mm	32 – 85								
5.0 mm	20 – 65	75 – 100							
630 μm		45 – 80							
315 μm	6 - 30								
80 μm	2 – 10	2 - 10							

The Pit-Run gravel should be free of any form of coating and any gravel or sand containing clay, loam or other deleterious materials should be rejected. No oversize material should be tolerated. The percent of material passing the 80 μ m sieve should not exceed 2/3 of the material passing the 315 μ m sieve.

20 mm and 40 mm crushed gravel should be hard, clean, well graded, crushed aggregate, free of organics, coal, clay lumps, coatings of clay, silt and other deleterious materials. The aggregates should conform to the following Alberta Transportation gradation requirements when tested in accordance with ASTM C136:

PERCENT PASSING BY WEIGHT								
SIEVE SIZE	20 mm CRUSH (A.T. D2- C20)	40 mm CRUSH (A.T. D2- C40)						
40 mm		100						
25 mm		70 – 94						
20 mm	100							
16 mm	84 - 94	55 – 85						
10 mm	63 - 86	44 – 74						
5.0 mm	40 - 67	32 – 62						
1.25 mm	20 - 43	17 – 43						
630 μm	14 – 34	12 – 34						
315 μm	9 – 26	8 – 26						
160 μm	5 – 18	5 – 18						
80 μm	2 – 10	2 – 10						

A minimum of 60 percent of the material retained on the 5 mm sieve for the 20 mm crushed gravel should have at least two freshly crushed faces. Not less than 50 percent of the material retained on the 5 mm sieve for the 40 mm crushed gravel should have at least two freshly crushed faces.

The 20 mm granular course should be compacted in lifts not exceeding 150 mm to 100 percent of Standard Proctor maximum dry density.

"Coarse gravel" for bedding and drainage should conform to the following grading:

PERCENT PASSING BY WEIGHT										
SIEVE SIZE	28 mm GRAVEL	20 mm GRAVEL								
40 mm	100									
28 mm	95 - 100	100								
20 mm		85 – 100								
14 mm	25 - 60	60 - 90								
10 mm		25 - 60								
5 mm	0 - 10	0 – 10								
2.5 mm	0 - 5	0 - 5								

SIEVE SIZE (Square Openings)	PERCENT PASSING (By Weight)
10 mm	100
5 mm	95 - 100
2.5 mm	80 - 100
1.25 mm	50 - 90
630 μm	25 - 65
315 μm	10 - 35
160 μm	2 - 10
80 μm	0 - 4

"Coarse sand" for bedding and drainage should conform to the following grading:

"Lean-mix concrete" should be low strength concrete having a minimum 28-day compressive strength of 3.5 MPa.

BORED CAST-IN-PLACE CONCRETE PILES

Design and construction of piles should comply with relevant Building Code requirements.

Piles should be installed under full-time inspection of geotechnical personnel. Pile design parameters should be reviewed in light of the findings of the initial bored shafts drilled on a site. Further design review may be necessary if conditions observed during site construction do not conform to design assumptions.

Where fill material or lenses or strata of sand, silt or gravel are present within the designed pile depth, these may be incompetent and/or water bearing and may cause sloughing. Casing should be on hand before drilling starts and be used, if necessary, to seal off water and/or prevent sloughing of the hole.

If piles are to be underreamed (belled), the underreams should be formed entirely in self supporting soil and entirely within the competent bearing stratum. Where caving occurs at design elevation it may be necessary to extend the base of the pile bell to a greater depth. Piles may be constructed with bells having outside diameters up to approximately three times the diameters of their shafts. Piles with shaft diameters of less than 400 mm should not be underreamed due to difficulties associated with ensuring a clean base.

Prior to pouring concrete, bottoms of pile bells or of straight-shaft end-bearing piles should be cleaned of all disturbed material.

Pile excavations should be visually inspected after completion to ensure that disturbed materials and/or water are not present on the base so that recommended allowable bearing and skin friction parameters may apply.

Visual inspection may be accomplished by the inspector descending into the pile shaft (shaft diameter of 760 mm (30 inch) or greater). A protective cage and other safety equipment required by government regulations should be provided by the contractor to facilitate downhole inspection.

Other procedures to inspect the pile shafts may be used where shaft diameters of less than 760 mm (30 inch) are constructed, such as, inspection with a light.

For safety reasons, where hand cleaning and/or 'down shaft' inspection by personnel are required, the pile shaft must be cased full-length prior to personnel entering the shaft.

Reinforcing steel should be on hand and should be placed as soon as the bore has been completed and approved.

Longitudinal reinforcing steel is recommended to counteract the possible tensile stresses induced by frost action and should extend to a minimum depth of 3.5 m. A minimum steel of 0.5 percent of the gross shaft area is recommended.

Where a limited quantity of water is present on the pile base, when permitted or directed by a geotechnical engineer, it should be either removed or absorbed by the addition of dry cement, which should then be thoroughly mixed as an in situ slurry by means of the belling tool, using reverse rotation of the tool. Where significant quantities of water are present and it is impracticable to exclude water from the pile bore, concrete should be placed by tremie techniques or concrete pump.

A "dry" pile should be poured by "free fall" of concrete only where impact of the concrete against the reinforcing cage, which can cause segregation of the concrete, will not occur. A hopper should be used to direct concrete down the centre of the pile base and to prevent impact of concrete against reinforcing steel.

Concrete used for "dry" uncased piles should be self compacting and should have a target slump of 125 mm. Where casing is required to prevent sloughing or seepage, the slump should be increased to 150 mm. In order to comply with maximum water:cement ratios for the concrete, the use of chemicals (or superplasticizers) to temporarily increase the slump may be required. Concrete for each pile should be poured in one continuous operation and should be placed immediately after excavation and inspection of piles, to reduce the opportunity for the ingress of free water or deterioration of the exposed soil or rock.

If piles cannot be formed in dry conditions then the concrete should be placed by tremie tube or concrete pump. Concrete placed by tremie should have a slump of not less than 150 mm. A ball or float should be used in the tremie tube to separate the initial charge of concrete from the water in the pile hole. The outlet of the tremie tube should be maintained at all times 1.0 m to 2.0 m below the surface of the concrete. The diameter of the tremie tube should be at least 200 mm. The tube should be water tight and not be made of aluminum. Smaller diameter pipes may be used with a concrete pump. The surface of the concrete should be allowed to rise above the cut off level of the pile, so that when the temporary casing is withdrawn and the surface level of the concrete adjusts to the new volume, the top of the uncontaminated concrete is at or above the cut off level. The concrete should be placed in one continuous smooth operation without any halts or delays. Placing the lower portion of the pile by tremie tube and placing the upper portion of the pile by "free fall" should not be permitted, to ensure that defects in the pile shaft at the top of the tremie concrete do not occur. As the surface of the concrete rises in the pile bore the water in the pile bore will be displaced upwards and out of the top of the pile casing. It may be necessary to pump off this water to a container or temporary ditch drain to prevent the formation of ice or flooding conditions, and possibly damage to existing structures.

When concreting piles by tremie techniques allowance should be made for the removal of contaminated or otherwise defective concrete at the tops of the piles.

The casing should be filled with concrete and then the casing should be withdrawn smoothly and continuously. Sufficient concrete should be placed to allow for the additional volume of the casing and reduction in level of the concrete as the casing is withdrawn. Concrete should not be poured on top of previously poured concrete, after the casing is withdrawn.

An accurate record of the volume of concrete placed should be maintained as a check that a continuous pile had been formed.

Concrete should not be placed if its temperature is less than 5°C or exceeds 30°C, or if it is more than 2.0 hours old.

Where tension, horizontal or bending moment loading on the pile is foreseen, steel reinforcing should be extended and tied into the grade beam or pile cap. The steel should be designed to transfer loads to the required depth in the pile and to resist resultant bending moments and shear forces.

Void formers should be placed beneath all grade beams to reduce the risk of damage due to frost effects or soil moisture changes.

Where the drilling operation might affect the concrete in an adjacent pile (i.e.; where pile spacing is less than about three diameters) drilling should not be carried out before the previously poured pile concrete has set for at least 24 hours.

Where a group of four or more piles are used the allowable working load on the piles may need to be modified to allow for group effects.

Piles should be spaced no closer than 2.5 times the pile shaft diameter, measured centre-to-centre. Strict control of pile location and verticality should be exercised to provide accurate locations and spacings of piles. In general, piles should be constructed within a tolerance of 75 mm plan distance in any direction and within a verticality of 1 in 75.

A detailed record should be kept of pile construction; the following information should be included, pile number, shaft/base diameter, date and time bored, date and time concreted, elevation of piling platform, depths (from piling platform level) to pile base and to concrete cut-off level, length of casing used, details of reinforcement, details of any obstructions, details of any groundwater inflows, brief description of soils encountered in the bore and details of any unusual occurrences during construction.

If a large number of piles are to be installed, it may be possible to optimize the design on the basis of pile load tests.

CONSTRUCTION GUIDELINE

PROOF-ROLLING

Proof-rolling is a method of detecting soft areas in an 'as-excavated' subgrade for fill, pavement, floor or foundations or detecting non-uniformity of compacted embankment. The intent is to detect soft areas or areas of low shear strength not otherwise revealed by means of testholes, density testing, or visual examination of the site surface and to check that any fill placed or subgrade meets the necessary design strength requirements.

Proof-rolling should be observed by qualified geotechnical personnel.

Proof-rolling is generally accomplished by the use of a heavy (15 to 60 tonne) rubber-tired roller having 4 wheels abreast on independent axles with high contact wheel pressures (inflation pressures ranging from 550 kPa (80 psi) up to 1030 kPa (150 psi).

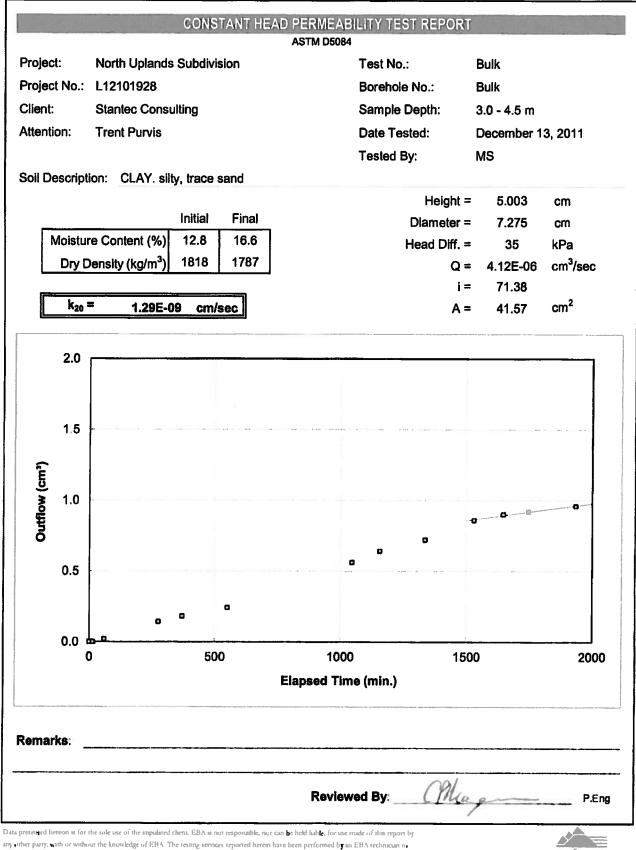
A heavily loaded tandem axle gravel truck may be used in lieu of the equipment described in the paragraph above. The truck should be loaded to approximately 10 tonnes per axle and a minimum tire pressure of 550 kPa (80 psi).

Ground speed - maximum 8 km/hr recommended 4 km/hr.

The recommended procedure is two complete coverages with the proof-rolling equipment in one direction and a second series of two coverages made at right angles to the first series; one 'coverage' means that every point of the proof-rolled surface has been subjected to the tire pressure of a loaded wheel. Less rigorous procedures may be acceptable under certain conditions subject to the approval of an engineer.

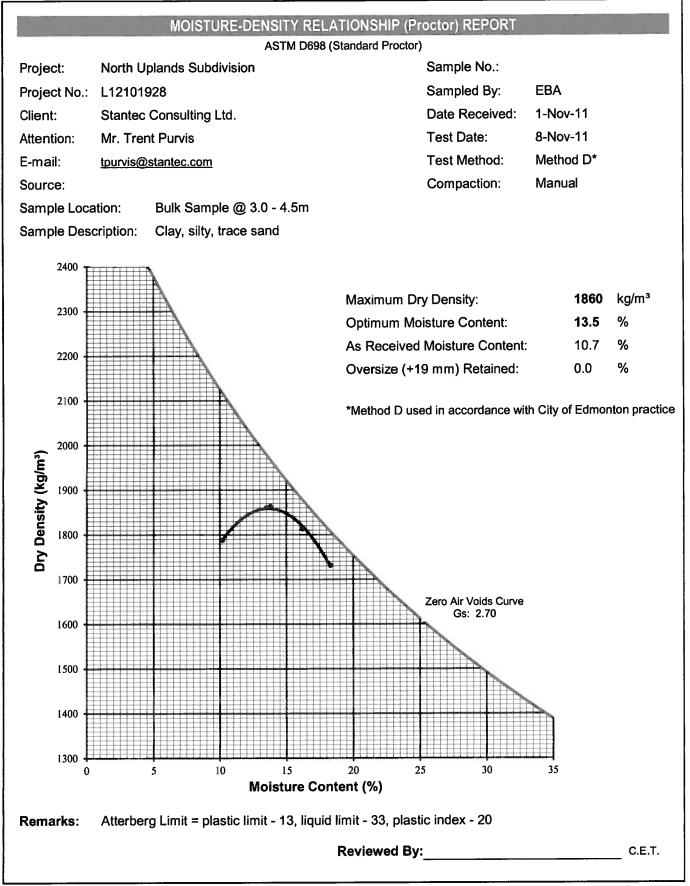
Any areas of soft, rutted, or displaced materials detected should be either recompacted with additional fill or the existing material removed and replaced with general engineered fill, or properly moisture conditioned as necessary.

The surface of the grade under the action of the proof-roller should be observed, noting; visible deflection and rebound of the surface, formation of a crack pattern in the compacted surface or shear failure in the surface of granular soils as ridging between wheel tracks.


If any part of an area indicates significantly more distress than other parts, the cause should be investigated, by, for example, shallow auger holes.

In the case of granular subgrades, distress will generally consist of either compression due to insufficient compaction or shearing under the tires. In the first case, rolling should be continued until no further compression occurs. In the second case, the tire pressure should be reduced to a point where the subgrade can carry the load without significant deflection and subsequently gradually increased to its specified pressure as the subgrade increases in shear strength under this compaction.

EBA FILE: L12101928 | JANUARY 2012 | ISSUED FOR USE


APPENDIX D APPENDIX D LABORATORY TEST RESULTS

recognized industry standards, unless otherwise noted. No other varianty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required. EBA will private it upon written request



Data presented hereon is for the sole use of the stipulated client. EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed by an EBA technician to recognized industry standards, unless otherwise noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

BLACKWOLF STAGE 2 OUTLINE PLAN

APPENDIX D

Environmental Site Assessment

STANTEC CONSULTING LTD.

PHASE I ENVIRONMENTAL SITE ASSESSMENT LANDS NORTH OF UPLANDS 3625 & 4205 – 13 STREET NORTH AND 2200 – 44 AVENUE NORTH LETHBRIDGE, ALBERTA

REPORT

MARCH 2012 ISSUED FOR USE EBA FILE: L12101928.001

creating & delivering

BETTER SOLUTIONS

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Stantec Consulting Ltd. and their agents. EBA Engineering Consultants Ltd. operating as EBA, A Tetra Tech Company (EBA), does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than the Stantec Consulting Ltd., or for any project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in EBA's Services Agreement. EBA's General Conditions are provided in Appendix A of this report.

EXECUTIVE SUMMARY

Foreword

Stantec Consulting Ltd. (Stantec), retained EBA Engineering Consultants Ltd. operating as EBA, A Tetra Tech Company (EBA), to conduct a Phase I environmental site assessment (ESA) of the proposed Lands North of Uplands residential subdivision, located in North Lethbridge, Alberta. The municipal addresses for the site are 3625 & 4205 – 13 Street North and 2200 – 44 Avenue North. The legal description of the property is NW ¼ 17-9-21 W4M. Collectively, this area will hereinafter be referred to as the site.

The objective of the Phase I ESA was to provide comment on whether any past or present land use, either on site or off site, may have a potential to cause environmental impairment to the site. EBA understands that Stantec requires the Phase I ESA for potential development purposes. The Phase I ESA was conducted in general accordance with the Canadian Standards Association (CSA) Phase I ESA Standard Z768-01 (2006).

A geotechnical investigation was conducted by EBA (EBA File No. L12101928) which will be issued under separate cover.

Findings and Conclusions

The site is currently cultivated, agricultural land with an ephemeral wetland on the north boundary and one on the west side of the site. No buildings are located on the site. One associated natural gas pipeline belonging to ATCO is located within NW 17-9-21 W4M along the west property line. Another ATCO owned pipeline is present further west of the site and extends parallel to the pipeline on the site. A pad mounted transformer is located on the northwest side of the site.

The site is bound to the north by agricultural cropland. The site is bound by 13 Street North to the west followed by Hardieville on the northern half and the Legacy Ridge residential subdivision on the southern half. A former service station was historically located at 1236/1240 – 41 Avenue North, adjacent to the site to the west within Hardieville. The Oldman River is located approximately 2.5 km further west. The site is bound to the south by the Uplands residential subdivision. The site is bound to the east by agricultural cropland and the Blackwolf residential subdivision approximately 200 m further east.

In general terms, there are two distinct types of potential environmental risk to any property. The first type of risk is from potential contamination from on-site land use. This would include potential accidental spills or site practices that may contaminate the property directly. The second type of risk is from contamination caused by adjacent property owners, which might then be transported through the subsurface soils by groundwater, or in overland runoff onto the site.

There was one source of potential environmental impairment from current or historical on-site land uses identified during this study. The following table identifies this source.

Potential On-Site Source of Environmental impairment				
Source of Potential Impairment Source of Information		EBA Evaluation		
Ephemeral wetlands Site reconnaissance,		Ephemeral wetlands were located on the north side and west sides		
on the site. aerial photograph review. of the site which may have the potential for methane generation				

Potential On-site Source of Environmental Impairment

There was one source of potential environmental impairment from current or historical off-site land uses identified during this study. The following table outlines this source.

Source of Potential Impairment Source of Informati		EBA Evaluation	
Former gas station located at 1236/1240 – 41 Avenue North	Henderson Business Directories, personnel interviews.	Information from the site interview suggests that the former gas station was present at this location from the early 1950s to the early 1970s. The former tanks were located on the north side of this property, which is approximately 30 m from the site. There is potential for soil and groundwater impact to the site from historical off-site activities.	

Potential Off-site Source of Environmental Impairment

Based on the present study, further intrusive environmental investigation would be required to assess the soil and groundwater quality on the west side of the site in the general vicinity of the former gas station.

EBA also suggests taking the following into consideration:

- An ephemeral wetland was observed on the north side of the site during the site reconnaissance and an additional ephemeral wetland was noted on the west side of the site in the aerial photograph review. Future development in these areas would require an approval under the Alberta Water Act. There is potential for methane generation from the buried organic material which is commonly found in wetland areas. Buried organic soils should be removed in the areas of future building development.
- The site is underlain by a coal mine that was mined to approximately 100 m below the surface of the site. Based on the review of the ERCB coal mine atlas and the aerial photograph review, there is no evidence of mining activities on the surface of the site. Should evidence of coal slag be encountered on the site during site redevelopment, an environmental professional should be consulted and further investigation may be warranted.
- A natural gas pipeline is located on the west side of the site and one further west of the site. There may be potential for impacts to the soil from pipeline construction activities. If evidence of petroleum hydrocarbon staining or odours are encountered during site redevelopment, an environmental professional should be consulted and further investigation may be warranted.
- According to the AEW water well database, a water well is located within the site boundary; however, the exact location of the well cannot be accurately determined. If the well is encountered during construction activities, it will need to be decommissioned in accordance with current regulations.

TABLE OF CONTENTS

EXE	CUT		i
1.0	INT		
	1.1	General	1
	1.2	Authorization	1
	1.3	Scope of Work	1
	1.4	Qualifications of Assessors	
	1.5	General Site Details	
2.0	REC	CORDS REVIEW	
	2.1	Municipal Addresses, Legal Land Descriptions, Land Use, and Ownership	
	2.2	Historical Records Review	
		2.2.1 Historical Land Title Records	
		2.2.2 Aerial Photographs	
		2.2.3 Museum Archives	
		2.2.4 Business Directories	
		2.2.5 Fire Insurance Plans	-
		2.2.6 Other Archival Records	
	2.3	Provincial Regulatory Information	
		2.3.1 Petroleum Tank Management Association of Alberta [PTMAA]	
		2.3.2 Energy Resources Conservation Board [ERCB]	
		2.3.3 Alberta Environment and Water [AEW]	
	2.4	Regional and Municipal Regulatory Information	
		2.4.1 City of Lethbridge Development Services	
		2.4.2 County of Lethbridge	
	2.5	Landforms and Geology	
		2.5.1 Topography	
		2.5.2 Geology	
		2.5.3 Hydrology and Hydrogeology	
	2.6	Previous Reports	
	2.7	Other Information Sources	
3.0	SITE	E RECONNAISSANCE	
	3.1	Building Details	
	3.2	Site Servicing	
	3.3	Special Attention Items	
	3.4	Site Observations	
	0.1	3.4.1 Surficial Stains	
		3.4.2 Lead-based Paints	
		3.4.3 Vegetation	
		3.4.4 Ponding of Water	
			······································

		3.4.5	Washouts and Erosion	.12
		3.4.6	Fill Areas and Soil Conditions	12
		3.4.7	Oil/Gas Wells and Pipelines	12
		3.4.8	Waste Storage	13
		3.4.9	Sumps and Drains	13
		3.4.10	Chemical Storage	13
		3.4.11	Hazardous Materials	13
		3.4.12	Storage Containers	13
		3.4.13	Transformers	13
		3.4.14	Hydraulic Elevators and Hoists	13
		3.4.15	Vent Pipes and Underground Storage Tanks [USTs]	13
		3.4.16	Above-ground Storage Tanks [ASTs] and Drum Storage	13
		3.4.17	General Housekeeping	13
	3.5	Off-site	Observations	.14
4.0	PER	SONNE		14
5.0	DISC	CUSSIC	N AND CONCLUSIONS	14
	5.1	Genera	Ι	.14
	5.2		al for Impairment from On-site Source(s)	
	5.3		al for Impairment from Off-site Source(s)	
6.0	FUR		ACTION/RENDERING AN OPINION	15
7.0	CLC	SURE		16
REFI	EREN	CES		17

FIGURES

Figure 1	Site Location Plan
Figure 2	Detailed Site Plan

APPENDICES

- Appendix A Environmental Phase I Report General Conditions
- Appendix B Site Photographs
- Appendix C Phase I Environmental Site Assessment Information
- Appendix D Special Attention Items Background Information

I.0 INTRODUCTION

I.I General

Stantec Consulting Ltd. (Stantec), retained EBA Engineering Consultants Ltd. operating as EBA, A Tetra Tech Company (EBA), to conduct a Phase I environmental site assessment (ESA) of the proposed Lands North of Uplands residential subdivision, located in North Lethbridge, Alberta. The municipal addresses for the site are 3625 & 4205 – 13 Street North and 2200 – 44 Avenue North. The legal description of the property is NW ¼ 17-9-21 W4M. Collectively, this area will hereinafter be referred to as the site.

The objective of the Phase I ESA was to provide comment on whether any past or present land use, either on site or off site, may have a potential to cause environmental impairment to the site. EBA understands that Stantec requires the Phase I ESA for potential development purposes. The Phase I ESA was conducted in general accordance with the Canadian Standards Association (CSA) Phase I ESA Standard Z768-01 (2006).

A geotechnical investigation was conducted by EBA (EBA File No. L12101928) which will be issued under separate cover.

I.2 Authorization

Mr. Trent Purvis, P.Eng., on behalf of Stantec, provided written authorization to proceed with the present Phase I ESA on January 28, 2011.

I.3 Scope of Work

EBA conducted the following scope of work for the Phase I ESA:

- Conducted a records review for the site and surrounding properties:
 - Reviewed current and historical information searches of provincial regulatory information including:
 - Alberta Registries' current and historical land titles.
 - The Petroleum Tank Management Association of Alberta (PTMAA).
 - The Energy Resources Conservation Board (ERCB) information provided by the Abacus Datagraphics (AbaData) database.
 - Alberta Environment's (AENV's) database: ESA Repository (ESAR), Online Water Well Database, Approval Viewer, and Spatial Information System (SPIN II).
 - Reviewed available regional and municipal information including:
 - Aerial photographs.
 - The City of Lethbridge.

- The County of Lethbridge.
- Geologic and hydrogeologic information including published topographic, geologic, soils, and groundwater maps.
- Conducted a site reconnaissance to evaluate the extent and manner that past, present, and surrounding activities may have upon the site and the environment. Intrusive sampling was not conducted as part of the Phase I ESA.
- Prepared this report discussing the site history and identified the potential for environmental concerns caused by past or present land use on site and in the surrounding area.

I.4 Qualifications of Assessors

Ms. Michele Crawford, B.Sc., CIE, assisted with the historical records review and prepared this report. Ms. Crawford is an environmental scientist for EBA's Edmonton environment practice and has over 4 years of experience in the environmental industry.

Ms. Mireille Rigaux, B.Sc., acted as the Project Manager, conducted the site visit and the peer review of the report. Ms. Rigaux is an environmental scientist for EBA's Lethbridge environment practice and has over five years of experience in the environmental industry.

Ms. Mandi Parker, P.Ag., assisted with the interpretation of the findings and conducted the senior review of the report. Ms. Parker is a Project Director for EBA's Lethbridge environment practice and has over 11 years of experience in the environment industry.

I.5 General Site Details

The square site is located north of the Uplands residential subdivision on the north side of Lethbridge, Alberta. The site is currently cultivated, agricultural land with one ephemeral wetland on the north property boundary and one on the west side of the site. No buildings were located on the site. One associated natural gas pipeline belonging to ATCO is located within NW 17-9-21 W4M along the west property line. Another ATCO owned pipeline is present further west of the site and runs parallel to the pipeline on the site. A pad mounted transformer is located on the northwest side of the site.

The site is bound to the north by agricultural cropland. The site is bound by 13 Street North to the west followed by Hardieville on the northern half and the Legacy Ridge residential subdivision on the southern half. A former service station was historically located at 1236/1240 – 41 Avenue North, adjacent to the site to the west, within Hardieville. The Oldman River is located approximately 2.5 km further west. The site is bound to the south by the Uplands residential subdivision. The site is bound to the east by agricultural cropland and the Blackwolf residential subdivision approximately 200 m further east.

Figure 1 shows the site location plan and Figure 2 shows the site plan showing surrounding land use. Photographs (Photos) of the site are provided in Appendix B.

2.0 **RECORDS REVIEW**

The results of regulatory searches are provided in Appendix C.

2.1 Municipal Addresses, Legal Land Descriptions, Land Use, and Ownership

The site is located within the City of Lethbridge. The legal land descriptions, land use, and ownership are summarized in Table A.

Table A: Municipal Ad	dresses, Legal Land Descri	ptions, Land Use, and	Ownership

Municipal Address Legal Land Description		Zoning	Owner(s)
3625 – 13 St N, Lethbridge AB	12-17-9-21 W4M	Future Urban Development (FUD)	
4205 – 13 St N, Lethbridge AB	LSD 13 NW 17-9-21 W4M	FUD	The City of Lethbridge
2200 – 44 Ave N, Lethbridge AB	LSD 11 and 14-17-9-21 W4M	Valley (V)	

2.2 Historical Records Review

A historical records review was undertaken for this site and surrounding properties. Sections 2.2.1 through Section 2.7 discuss the findings of this review.

2.2.1 Historical Land Title Records

The results of the land title searches for the site are summarized in the following tables (Tables B through Table D).

 Table B: Land Titles Summary 12-17-9-21 W4M

Year(s) of Ownership	Owner(s)	EBA Evaluation
1982 - Present	The City of Lethbridge	
1982 - 1982	Olshaski Farms Ltd.	
1979 - 1982	Baldio Land Developments Ltd.	
1978 - 1979	Olshaski Farms Ltd.	Utility Right-of-Way – Canadian Natural Gas
1945 - 1978Steven Robert Olshaski of the City of Lethbridge in the Province of Alberta (Farmer)		Company Ltd. (1960)
1945 - 1945	May V. Krapfel	
1910 - 1945	Albert Frank Krapfel	

Notes: Land titles were obtained from Alberta Registries land title office in Calgary, Alberta.

Year(s) of Ownership	Owner(s)	EBA Evaluation
1982- Present	The City of Lethbridge	
1982 - 1982	Olshaski Farms Ltd.	
1979- 1982	Baldio Land Developments Ltd.	Utility Right-of-Way – Canadian Natural Gas
1978-1979	Olshaski Farms Ltd.	Company Ltd. (1960)
1945 - 1978	Steven Robert Olshaski of the City of Lethbridge in the Province of Alberta (Farmer)	present since the 1960s. No obvious environmental
1921 - 1945	His Majesty King George V in the right of the Province of Alberta	concern.
1915 - 1921	Roman Catholic Bishop of the Diocese of Calgary	

Table C: Land Titles Summary LSD 13 NW 17-9-21 W4M

Notes: Land titles were obtained from Alberta Registries land title office in Calgary, Alberta.

Table D: Land Titles Summary LSD 11 and 1417-9-21 W4M

Year(s) of Ownership	of Ownership Owner(s)		
1982 - present	The City of Lethbridge		
1982 - 1982	1982 - 1982 Olshaski Farms Ltd.		
1979 - 1982	Baldio Land Developments Ltd.	No obvious environmental	
1978 - 1979	Olshaski Farms Ltd.	concern.	
1947 - 1978	Steven Robert Olshaski of the City of Lethbridge in the Province of Alberta (Farmer)		
1944 - 1947	14 - 1947 Mary Elizabeth Atkinson of the City of Lethridge		
1907 - 1944	Canadian Pacific Railway Company	Based on the name, there may have been rail lines associated with the site or the mine site to the west of Hardieville. There may be potential for environmental impacts to the site from former rail lines operating in the area.	

Notes: Land titles were obtained from Alberta Registries land title office in Calgary, Alberta

2.2.2 Aerial Photographs

Aerial photographs provide visual evidence of site occupancy, operational activities, and general site details. Aerial photographs capture a view of the site and the surrounding areas at a given time. Table E provides a detailed historical review of the aerial photographs.

Year	Scale	Aerial Photograph Summary Observations
		On-site: Cultivated agricultural cropland. Dirt trails are visible extending from the southwest to the northeast side of the site. The outline of an ephemeral wetland is visible on the northern boundary of the site although it appears to be cultivated.
1950 1:40,000	1:40,000	Off-site: Cultivated agricultural cropland surrounding the site. Thirteenth Street North is present adjacent to the site to the west. Hardieville is visible to the west of the site and the land west of Hardieville appears to be disturbed (likely mining operations). A rectangular building is present to the southwest of the site (old Hardieville school). A small rectangular building is present to the west of the site on the south side.
		On-site: Similar to the 1950 aerial photograph.
1961	1:31,680	Off-site: Hardieville has been expanded to the west of the site. A yard with trees and shrubs now surrounds the small rectangular building to the west of the site on the south side. Two round structures are visible on the east side of the Hardieville school property.
1970	1:31,680	On-site: The ephemeral wetland on the north side of the site appears darker and cultivation extends around it rather than through it.
1970	1.31,000	Off-site: Additional development has been constructed within Hardieville including a large irregular-shaped building on the south side of town (currently the Trinity Reformed Church).
1979	1.25 000	On-site: The ephemeral wetland appears to contain water. The remaining of the surrounding land is similar to the 1970 aerial photograph.
1979	1:25,000	Off-site: Debris is visible on the Hardieville school property to the south of the site. Low lying wetlands in the surrounding area appear to contain water.
1099	1:20.000	On-site: A linear area on the west side of the site, extending from the Hardieville school to the northern boundary, appears to be stripped (likely the ATCO gas pipeline). The ephemeral wetland is smaller and does not appear to contain water.
1988	1:30,000	Off-site: Much of the debris has been removed from the Hardieville school property to the south of the site. Construction of the Uplands residential subdivision is underway to the south of the site, approximately 500 m to 800 m from the site boundary. An irrigation pivot has been added to the land north of the site.
1999	1:20,000	On-site: An oblong feature, possibly a soil pile or haystack is visible on the southeast side of the site. A linear area on the southwest side of the site appears to have been stripped (possibly an additional natural gas pipeline). A low area (ephemeral wetland) is visible on the west side of the site which does not appear to contain water.
		Off-site: Development in the Uplands residential subdivision has extended further north and is now visible along the southern boundary of the site.
2005	Unknown	On-site: A small rectangular object is visible on the northwest side of the site (possibly the changing station). A powerline has been constructed along the north boundary of the site.
		Off-site: The Uplands subdivision has been fully constructed along the southern boundary of the site.
		On-site: The oblong feature is no longer present on the southeast side of the site and the low area on the west side of the site has been cultivated over.
2011	Unknown	Off-site: The Hardieville school is no longer present to the south of the site. The acreage to the west of the site has been removed and the Legacy Ridge residential subdivision has been developed west of the site. Several fill piles are visible on the land to the east of the site, likely associated with the development of the Blackwolf residential subdivision approximately 200 m further east.

Table E: Historical Aerial Photograph Summary

Notes:

To be read in conjunction with the accompanying report.

The aerial photographs are enlarged (where possible) for the review.

Aerial photographs were obtained from Alberta Sustainable Resource Development (ASRD).

*2005 and 2011 imagery taken from the City of Lethbridge Interactive Webmap aerial photograph.

The site has remained agricultural throughout the timeline of the aerial photograph review. The surrounding land to the north has also remained agricultural throughout the timeline of the aerial photograph review. Land to the south remained agricultural until development of the Uplands residential subdivision occurred between 1979 and 2005. The land to the west shows the development of the Hamlet of Hardieville prior to 1950 and development of the Legacy Ridge subdivision between 2005 and 2011. The land further east remained agricultural until the development of the Blackwolf subdivision between 2005 and 2011.

2.2.3 Museum Archives

EBA searched the City of Lethbridge Galt Museum archives and maps for indications of historical land use at the site. The museum had maps for the mine which underlays the majority of the site; the coal slag piles, mine shafts, and buildings were located west of Hardieville, at least 800 m from the site. There are no shafts observed on the site itself.

2.2.4 **Business Directories**

EBA reviewed Henderson Business Directories (HBDs) approximately every five years from 1914 to 2000. The business directories were no longer published after 2000. There were no listings for the site itself; however, listings exist for the land to the west (Hardieville) and for the Hardieville School south of the site. Table F summarizes the findings of this review.

Location	Historical Occupant(s)	Dates Listed	Direction and Distance from Site	EBA Evaluation
3225 – 13 Street North	Hardieville School	1917 - 1985	Adjacent to the site to the southwest.	No obvious environmental concern.
421 – 13 Street North (currently 1236 and 1240 – 41 Avenue North in Hardieville)	Husky Service Station	1956	Across 13 Street North to the west, approximately 30 m from the site.	Potential for storage and handling of petroleum hydrocarbons (PHC).

Table F: Business Directory Summary

2.2.5 Fire Insurance Plans

EBA reviewed the Canadian Underwriters Association Fire Insurance Map for Lethbridge from 1955 (partially revised 1964); however, the map did not provide coverage for the site or the immediate surrounding area.

2.2.6 Other Archival Records

Anecdotal information suggested that a former service station was present at 1236/1240 – 41 Avenue North in Hardieville from the early 1950s to the early 1970s. Personnel involved with the property indicated that there were two underground storage tanks (USTs) present on the north side of the property approximately 30 m from the site. Personnel indicated that the tanks were removed in approximately 1973. No other details pertaining to the service station were available. Personnel interviews (Section 4.0) summarize the information pertaining to the service station.

2.3 Provincial Regulatory Information

This section describes the results of provincial regulatory searches. Copies of the search results and correspondence are provided in Appendix C.

2.3.1 Petroleum Tank Management Association of Alberta [PTMAA]

EBA contacted the PTMAA regarding the potential for registered petroleum storage tanks (PSTs) at the site and surrounding properties, including the address of the former service station. The PTMAA indicated that no PSTs were registered at the site (3625 & 4205 – 13 Street North and 2200 – 44 Avenue North) or in the immediate surrounding area, including the location of the former service station located at 1236/1240 – 41 Avenue North.

The PTMAA requires that all USTs be registered; however, only above-ground storage tanks (ASTs) with a capacity greater than 2,500 litres are required to be registered. The database is based on a limited survey conducted in 1992 and voluntary information submitted thereafter; therefore, it is not considered to be a comprehensive inventory of all tanks in Alberta.

2.3.2 Energy Resources Conservation Board [ERCB]

EBA acquires ERCB database information through AbaData. The AbaData database was searched to determine if oil/gas wells and/or pipelines exist or have existed at the site. AbaData indicated that one pipeline is present on the west side of the site and one is west of the site, across 13 Street North. One spill incident was also reported on the site. Additional information acquired from the ERCB on the pipelines and spill can be viewed in Appendix C. Table G outlines the details of the spill.

Name	Spill
Incident Number	19972884
ERCB Notified	August 11, 1997
Company	ATCO Gas and Pipelines Ltd. (South)
Licence Number	2150-10 (Pipeline License)
Source	Natural Gas Pipeline
Pipeline Damage	Leak
Failure Type	Gird Weld Failure
Spill Offsite?	No
Public/Wildlife/Area Affected	Conversion from Env System
Substance Spilled	1 (1,000 m ³) Gas Production (Raw) (0(1,000 m ³) Recovered)
Clean up Date	August 11, 1997

Table G: Spill Incident

Table H. Pipeline Information

Number	2150-8	2150-12	
Location	Extending north through the site on the west side.	Extending north through the adjacent site to the west (18-9-21 W4M).	
Permit Date	January 9, 2003	October 30, 2007	
Company	ATCO Gas and	Pipelines Ltd. (South)	
From	14-29-009-21 W4M	16-19-009-21 W4M	
То	12-17-009-21 W4M	01-18-009-21 W4M	
Length	3.88 km	3.12 km	
Substance	Natural gas	Natural gas	
H2S	0 mol/kmol	0 mol/kmol	

Table H outlines the details of the associated pipelines.

Substance	Natural yas	Inatura

The natural gas pipelines information provided by AbaData is current to January 31, 2012.

The ERCB Coal Mine Atlas was reviewed and it was determined that a coal mine is located underground of the majority of the subject site. The information from the ERCB Coal Mine Atlas indicated that the Galt Mine No. 6 (Mine number 0003/1) was previously located in 19-009-21 W4M. The mine belonged to the Canadian Pacific Railway and was operational from 1909 to 1935. Approximately 4,589.1 kilotonnes of coal was removed from the mine and the mine was abandoned in 1935.

This mine is not considered to be a concern to the site as the mine working area, including the tipple, office buildings, rail line, mine shaft, coal slag piles, and the active mining area were located approximately 800 m west of the site. The mine was underground and coal was removed from approximately 100 m below grade.

Alberta Environment and Water [AEW] 2.3.3

The AEW Online Environmental Site Repository (ESAR) is a searchable database that provides scientific and technical information about assessed sites throughout Alberta. The ESAR was searched for ESAs on the site. The ESAR search indicated that no records were available for NW 17-9-21 W4M.

The AEW Online Approval Viewer allows the public to view approvals, licenses, registrations, and permits issued under the Water Act and Environmental Protection and Enhancement Act (EPEA). No approvals, licenses, registrations, or permits were available for the site (NW 17-9-21 W4M).

The AEW Water Well Database has record of one water well within the site boundary; however, the exact location of the well cannot accurately be determined.

Table I summarizes the water well information.

Table I: Water Well Information

Section Location	Water Well ID	Owner	Year Drilled	Location on Site	Depth (m)
NW 17-9-21 W4M	106315	#6 Galt Mine	1908	Centre of the site	114.9

If the water well is encountered during site construction activities, it will need to be appropriately decommissioned in accordance with current regulations.

The Alberta Government SPIN Website provides information pertaining to legal land locations, ownership, and transportation and utility right-of-way (ROW). SPIN shows the same pipeline ROWs on the west side of the site as identified through AbaData.

2.4 Regional and Municipal Regulatory Information

This section describes the result of municipal regulatory searches. Copies of the search results and correspondence are provided in Appendix C.

2.4.1 City of Lethbridge Development Services

EBA requested a site inquiry with the City of Lethbridge for available information regarding environmental information at or near the site. They mentioned that Hardieville and east was annexed by the City in 1978 and the land to the north of the site was annexed in 1984. The land has been agricultural for the entire period that the City has had control over it.

2.4.2 **County of Lethbridge**

EBA requested a site inquiry with the County of Lethbridge. Personnel from the County indicated that the land was annexed by the City in 1978 (along with Hardieville).

2.5 Landforms and Geology

2.5.1 Topography

Surface topography can influence the direction of migration of contaminants at the soil surface. The local topography is the topography at the site, whereas regional topography is the overall expression of the soil surface in a given region. The surface topography of the site is gently undulating and slopes slightly (< 2 degrees) to the southwest. Regional topography in the area is generally undulating, and slopes west towards the Oldman River

2.5.2 Geology

The surficial geology in the area is characterized by moraine clay till deposits with sporadic lenses of gravel, sand, and silt.

The stratigraphy of the Lethbridge area is generally comprised of 65 m to 70 m of surficial deposits overlying bedrock. Bedrock in the Lethbridge area consists of strata from the upper Oldman Formation and the lower Bearspaw Formation, both of the late Cretaceous age. The bedrock has a relatively flat surface dipping slightly to the northwest and is locally encountered at about geodetic elevation 843 m. The bedrock strata consist of thin beds of predominantly weak mudstones, siltstones, and sandstones with occasional bentonite and coal seams.

2.5.3 Hydrology and Hydrogeology

Groundwater is of significance as a potential means of contaminant transport. Regional groundwater flow is the overall direction of groundwater flow in a given region. There may be local groundwater flow within a region that is in a different direction from the regional flow and that is controlled by topography and/or subsurface soil conditions.

The nearest surface waterbody is a stormwater retention pond (Chinook Lake) located approximately 500 m to the southeast in the Uplands residential subdivision. Drainage of surface water is expected to be west towards the Legacy Ridge subdivision. It is anticipated that shallow and regional groundwater flow would be west towards the Oldman River which is located approximately 2.0 km to the west of the site. Perched groundwater tables have been encountered in many areas of Lethbridge. The depth to these perched tables can vary from approximately 2 m below ground level to considerable depths within gravel, sand, and/or silt seams. The flow of these perched tables can also vary in any direction or be still, dependent on the horizontal and vertical dip and the extent of the sand and/or silt seams.

It should be noted that topography, geologic materials, land development, and soil disturbances influence localized variances in groundwater movement and pattern. In addition, groundwater levels will fluctuate seasonally and in response to climatic conditions.

2.6 **Previous Reports**

No previous reports were available for review at the site.

2.7 Other Information Sources

There were no other information sources available for review for this assessment.

3.0 SITE RECONNAISSANCE

Ms. Mireille Rigaux, of EBA, visited the site on February 7, 2012. The reconnaissance included a visual inspection of the site and observations of adjacent properties to identify evidence of impairment, or potential sources of impairment, which may adversely affect the site. The site was dry, fully accessible, and was vegetated with stubble at the time of the site reconnaissance.

3.1 Building Details

There were no buildings on site at the time of the site reconnaissance.

3.2 Site Servicing

No known municipal water was supplied to the site at the time of the site reconnaissance. In addition, no water wells were observed on the site at the time of the site reconnaissance. See Section 2.3.3 for water well details. A storm sewer was observed on the northwest side of the site. A distribution powerline was present on the west side of the site extending north and south, and on the north side extending east and west.

3.3 Special Attention Items

There were no buildings located on the site at the time of the site reconnaissance; however, other special attention items may be present at the site. Table J summarizes these special attention items. Further background information on these materials is provided in Appendix D.

Table J: Special Attention Item

ltem	Presence/ Potential Comments			
Asbestos				
Lead				
Mould				
Ozone-depleting Substances (ODS)	Low	No buildings were present at the site during the site reconnaissance.		
Urea Formaldehyde Foam Insulation (UFFI)				
Polychlorinated Biphenyls (PCBs)	ModerateA pad mounted transformer was present on the north side of the site and additional pad mounted transformer was observed adjacent to the site to south in the Uplands subdivision. It is unknown whether the transformer contained PCBs.			
Radon	Low There was no radon gas testing reported for the site; however, nat concentrations are low in Alberta and radon gas concentrations are below target limits set for Canada. There were no anthropogenic s radon gas identified.			
Methane High c		There was no methane gas testing reported for the site. Based upon information collected during this investigation (i.e., aerial photograph review, site reconnaissance), there is evidence of deposits of buried organics at the site that could produce methane. Suspected areas of methane generation include the ephemeral wetland located on the site (north side of the site and west side of the site). Refer to Section 3.4.6 regarding potential fill areas.		
Electromagnetic (EM)	Low	A distribution power line was observed parallel to the north boundary of the site which could be a source of EM fields. No EM assessment was completed for the site.		
Noise and Vibration	bration Low There were no major sources of noise and vibration at the site during the reconnaissance.			

The above is based on observations made during the site reconnaissance.

3.4 Site Observations

This section describes observations made of the site during the site reconnaissance.

3.4.1 Surficial Stains

There were no surficial stains observed during the site reconnaissance.

3.4.2 Lead-based Paints

There was no suspected lead-based paint observed on the site.

3.4.3 Vegetation

The majority of the vegetation on the site consisted of cereal stubble. No areas of stressed vegetation were observed on site during the site reconnaissance; however, vegetation was in a dormant state at the time of the site visit.

3.4.4 Ponding of Water

An ephemeral wetland was observed on the north side of the site at the time of the site reconnaissance which did not contain water. An additional ephemeral wetland was noted in the 1999 aerial photograph, but was not observed during the site reconnaissance. Future development in these areas would require an approval under the Alberta Water Act. Under the Alberta Water Act, a "waterbody" refers to "any location where water flows or is present, whether or not the flow or the presence of water is continuous, intermittent or occurs only during a flood, and includes but is not limited to wetlands..." (Water Act, revised Statutes of Alberta 2000, Chapter W-3, Section 1). A wetland identified on the property would be considered a "waterbody" under the Alberta Water Act and should therefore be included in the wetland compensation plan.

AENV's Provincial Restoration and Compensation Guide (February 2007) defines a wetland as "land that is saturated with water long enough to promote wetland or aquatic processes as indicated by poorly drained soils, hydrophytic vegetation, and various kinds of biological activity which are adapted to a wet environment".

3.4.5 Washouts and Erosion

There was no evidence of washouts or erosion observed during the site reconnaissance.

3.4.6 Fill Areas and Soil Conditions

No fill was observed at the site during the site reconnaissance; however, the ephemeral wetlands on the site had been cultivated over and there may be evidence of buried organics from the wetlands.

Soil stockpiles were observed during the site visit to the east of the site adjacent to the Blackwolf residential subdivision, approximately 200 m east of the site.

It should be noted that determining depths and exact locations of potential fill material are not within the scope of a Phase I ESA; however, a geotechnical evaluation was completed concurrently by EBA in January 2012 (EBA File No. L12101928) and is issued under separate cover.

3.4.7 Oil/Gas Wells and Pipelines

A high pressure ATCO gas pipeline was observed extending north to south on the western boundary of the site. There were no oil/gas wells observed at the site during the site reconnaissance. See Section 2.3.2 (AbaData) for well and pipeline details.

3.4.8 Waste Storage

There was no waste storage observed at the site during the site reconnaissance.

3.4.9 **Sumps and Drains**

There were no sumps observed at the site during the site reconnaissance.

3.4.10 Chemical Storage

There was no chemical storage observed at the site during the site reconnaissance.

3.4.11 Hazardous Materials

There were no hazardous materials observed at the site during the site reconnaissance.

3.4.12 Storage Containers

There were no storage containers observed at the site during the site reconnaissance.

3.4.13 Transformers

A pad mounted transformer was observed on the northwest corner of the site. The model number of the transformer was PMH-9 and the date was October 1986. There may be potential for the transformer to contain PCBs. A pad mounted transformer was also observed to the south of the site within the Uplands residential subdivision. No leaks or spills were observed in the area of the transformers.

3.4.14 Hydraulic Elevators and Hoists

There were no hydraulic elevators or hoists observed during the site visit.

3.4.15 Vent Pipes and Underground Storage Tanks [USTs]

No vent pipes or USTs were observed at the site during the site visit. Please refer to Section 2.3.1 and Section 2.6 for information about USTs on site or in the surrounding area.

3.4.16 Above-ground Storage Tanks [ASTs] and Drum Storage

No ASTs or drums were observed on the site during the site reconnaissance. Please refer to Section 2.3.1 and Section 2.6 for information about ASTs on site or in the surrounding area.

3.4.17 General Housekeeping

The general housekeeping of the site was good and no obvious signs of negligent acts or illegal dumping were observed during the site visit.

3.5 Off-site Observations

Table K summarizes the surrounding land use.

Direction	Land Use	EBA Evaluation
North	Agricultural cropland.	No obvious potential for environmental concerns.
East	Agricultural cropland followed by the Blackwolf residential subdivision 200 m further east.	
South	Uplands residential subdivision.	
West	Legacy Ridge residential subdivision and Hardieville.	There may be potential for soil and groundwater impacts to the site from historical property activities from the former service station located at 1236/1240 – 41 Avenue North (across 13 Street North within Hardieville).

Table K: Surrounding Land Use

4.0 **PERSONNEL INTERVIEWS**

EBA interviewed the following personnel during the Phase I ESA. The findings of the personnel interviews, which have been incorporated into this report, are in general agreement with the records review conducted for the site. Table L summarizes the interviews.

Item	Description
Interviewee	Employee with the City of Lethbridge Planning Department.
Information Provided	Provided information about the current and historical land use at the site. The City Planning Department confirmed that Hardieville and the land east of the site was annexed by the City in 1978 and that the land to the north of the site was annexed in 1984. The site land has been agricultural for the entire time the City has had control over it.
Interviewee	Owner of the former service station located at 1236/1240 – 41 Avenue North to the west of the site (Hardieville) who wishes to remain anonymous.
Information Provided	Provided information about the current and historical land use at the property including tank locations and approximate years of operation.

Table L: Interview Summary

5.0 DISCUSSION AND CONCLUSIONS

5.1 General

The site is currently cultivated, agricultural land with an ephemeral wetland on the north boundary and one on the west side of the site. No buildings are located on the site. One associated natural gas pipeline belonging to ATCO is located within NW 17-9-21 W4M along the west property line. Another ATCO owned pipeline is present further west of the site and extends parallel to the pipeline on the site. A pad mounted transformer is located on the northwest side of the site.

The site is bound to the north by agricultural cropland. The site is bound by 13 Street North to the west followed by Hardieville on the northern half and the Legacy Ridge residential subdivision on the southern half. A former service station was historically located at 1236/1240 – 41 Avenue North, adjacent to the site

to the west within Hardieville. The Oldman River is located approximately 2.5 km further west. The site is bound to the south by the Uplands residential subdivision. The site is bound to the east by agricultural cropland and the Blackwolf residential subdivision approximately 200 m further east.

In general terms, there are two distinct types of potential environmental risk to any property. The first type of risk is from potential contamination from on-site land use. This would include potential accidental spills or site practices that may contaminate the property directly. The second type of risk is from contamination caused by adjacent property owners, which might then be transported through the subsurface soils by groundwater, or in overland runoff onto the site.

5.2 Potential for Impairment from On-site Source(s)

There was one source of potential environmental impairment from current or historical on-site land uses identified during this study. Table M identifies this source.

Source of Potential Impairment	Source of Information	EBA Evaluation
Ephemeral wetlands on the site.	Site reconnaissance, aerial photograph review.	Ephemeral wetlands were located on the north side and west sides of the site which may have the potential for methane generation.

Table M: Potential On-site Source of Environmental Impairment

5.3 **Potential for Impairment from Off-site Source(s)**

There was one source of potential environmental impairment from current or historical off-site land uses identified during this study. Table N outlines this source.

Table N: Potential Off-site Source of Environmental Impairment	Table N:	Potential	Off-site	Source of	f Environmental	Impairment
--	----------	-----------	-----------------	-----------	-----------------	------------

Source of Potential Impairment	Source of Information	EBA Evaluation
Former gas station located at 1236/1240 – 41 Avenue North	Henderson Business Directories, personnel interviews.	Information from the site interview suggests that the former gas station was present at this location from the early 1950s to the early 1970s. The former tanks were located on the north side of this property which is approximately 30 m from the site. There is potential for soil and groundwater impact to the site from historical off-site activities.

6.0 FURTHER ACTION/RENDERING AN OPINION

Based on the present study, further intrusive environmental investigation would be required to assess the soil and groundwater quality on the west side of the site in the general vicinity of the former gas station.

EBA also suggests taking the following into consideration:

 An ephemeral wetland was observed on the north side of the site during the site reconnaissance and an additional ephemeral wetland was noted on the west side of the site in the aerial photograph review. Future development in these areas would require an approval under the Alberta Water Act. There is potential for methane generation from the buried organic material which is commonly found in wetland areas. Buried organic soils should be removed in the areas of future building development.

- The site is underlain by a coal mine that was mined to approximately 100 m below the surface of the site. Based on the review of the ERCB coal mine atlas and the aerial photograph review, there is no evidence of mining activities on the surface of the site. Should evidence of coal slag be encountered on the site during site redevelopment, an environmental professional should be consulted and further investigation may be warranted.
- A natural gas pipeline is located on the west side of the site and one further west of the site. There may
 be potential for impacts to the soil from pipeline construction activities. If evidence of petroleum
 hydrocarbon staining or odours are encountered during site redevelopment, an environmental
 professional should be consulted and further investigation may be warranted.
- According to the AEW water well database, a water well is located within the site boundary; however, the exact location of the well cannot be accurately determined. If the well is encountered during construction activities, it will need to be decommissioned in accordance with current regulations.

7.0 CLOSURE

We trust this report meets your present requirements. Should you have any questions or comments, please contact the undersigned.

Sincerely, EBA Engineering Consultants Ltd.

Michele Crawford, B.Sc., CIE Environmental Scientist Environment Practice Direct Line: 780.451.2130 x334 mcrawford@eba.ca

Mireille Rigaux, B.Sc. Environmental Scientist Environment Practice Direct Line: 403.329.9009 x244 mrigaux@eba.ca

/tlp

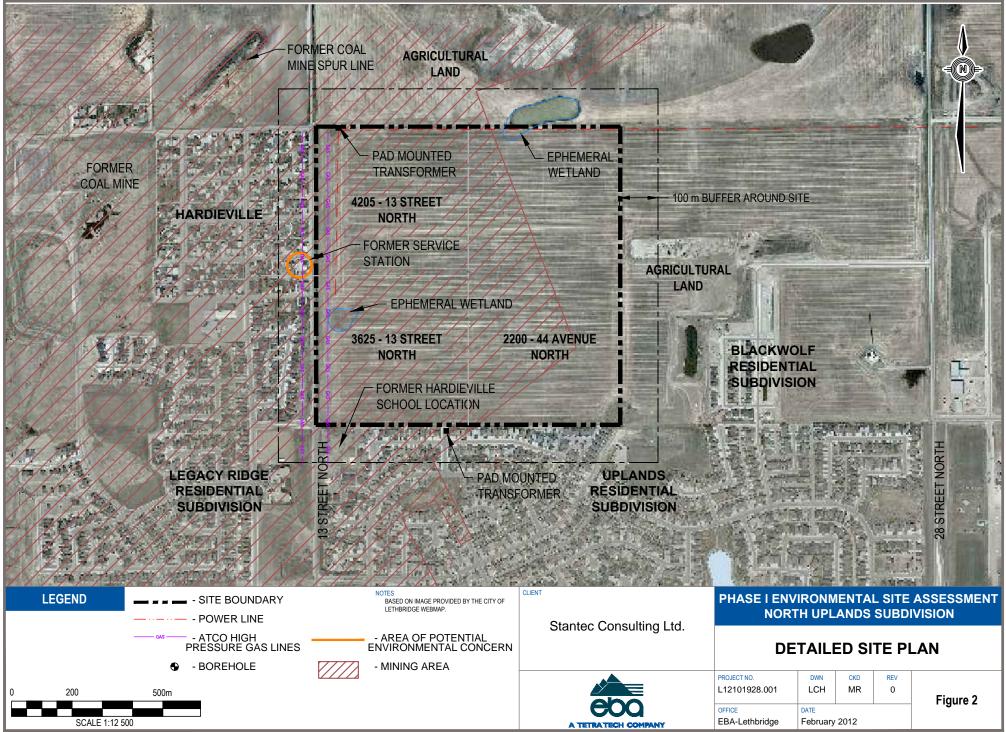
Reviewed by: Mandi Parker, P.Ag. Project Director Environment Practice Direct Line: 403.329.9009 x224 mparker@eba.ca

references

- ABACUS Datagraphics Website. Updated September 30, 2011. Abadata database http://www.abacusdatagraphics.com/.
- Alberta Energy and Utilities Board and Alberta Geological Survey. 1999. Geological Map of Alberta. Edmonton, Alberta Scale 1:1,000,000.
- Alberta Environment. (date of last update not available). Authorization/Approval Viewer. http://www3.gov.ab.ca/env/water/approvalviewer.html.
- Alberta Environment. (date of last update not available). Environmental Site Assessment Repository. http://www.esar.alberta.ca/esarmain.aspx.
- Alberta Environment. (data of last update not available). Water Well Database. http://www.telusgeomatics.com/tgpub/ag water/.
- Alberta Registries. 2011. Land Title Certificates, Calgary Land Title Office.
- Alberta Sustainable Resource Development. (date of last update not available). Aerial Photo Record System. http://secureexnet.env.gov.ab.ca/aprs/index.html.
- Canada Standards Association. 2006. Z768-01, Phase I Environmental Site Assessment. Publishes November 2001, revised April 2006.
- City of Lethbridge Interactive Webmap. (aerial photograph circa 2011). http://gis.lethbridge.ca
- Energy Resource Conservation Board. (date of last update not available). http://coalminemap.ercb.ca/spatialdatabrowser/.
- Shetson, I. 1981. Surficial Geology Lethbridge, Alberta. Alberta Research Council, Edmonton, Alberta.
- The Alberta Government Spin II Website. (date of last update not available). https://alta.registries.gov.ab.ca/spinii/logon.aspx
- Tokarsky, O. 1973. Hydrogeological Map Lethbridge-Fernie, Alberta (NTS 82G-H). Alberta Research Council, Edmonton, Alberta.

FIGURES

Figure I Site Location Plan


Figure 2 Detailed Site Plan

LEGEND		AGES ON IMAGE PROVIDED BY GOOGLE EARTH PRO.	Stantec Consulting Ltd.	PHASE I ENVIRONMENTAL SITE ASSESSMENT NORTH UPLANDS SUBDIVISION					
				SITE LOCATION PLAN					
0 0.4 1	2 km			PROJECT NO. L12101928.001	DWN LCH	CKD JZ	REV 0	Figure 1	
SCALE 1:40 (000			OFFICE EBA-Lethbridge	DATE February 2012				

C:\Users\leanne.hughes\Documents\L12101928\L12101928-001_FIG1,2_R0.dwg [FIGURE 2] February 29, 2012 - 1:30:59 pm (BY: HUGHES, LEANNE)

ENVIRONMENTAL PHASE I REPORT – GENERAL CONDITIONS

GENERAL CONDITIONS

ENVIRONMENTAL PHASE I REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites.

This report and the assessments and recommendations contained in it are intended for the sole use of EBA's Client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. EBA's instruments of professional service will be used only and exactly as submitted by EBA.

Electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the Client agrees that notification to such bodies or persons as required may be done by EBA in its reasonably exercised discretion.

4.0 INFORMATION PROVIDED TO EBA BY OTHERS

During the performance of the work and the preparation of the report, EBA may rely on information provided by persons other than the Client. While EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

EBA FILE: L12101928.001 | MARCH 2012 | ISSUED FOR USE

Photo 1: Looking south at western boundary from northwest corner of site. Note Hardieville to the west and the powerline extending south across the west side. The ATCO high pressure gas line runs parallel to this powerline.

Photo 2: Looking east at the northern boundary of the site. Note the agricultural land use to the north and the powerline extending across the northern side. The pad mounted transformer is also located under the powerline.

Photo 3: Looking south across the site from the northern boundary. Note the Uplands residential subdivision in the background.

Photo 4: Looking northwest across the site from the southeast corner. Note Hardieville on the left and Legacy Ridge residential subdivision centre and right.

Photo 5: Land use to the west on the south side: 13 Street North followed by Legacy Ridge residential subdivision.

Photo 6: Land use to the south: Uplands residential subdivision.

Photo 7: Land use to the east: Agricultural crop land followed by Blackwolf residential subdivision.

Photo 8: Land use to the north: Agricultural cropland.

Photo 9: Location of former service station in Hardieville (1236/1240 – 13 Street North) adjacent to the site to the west.

Photo 10: Transformer located on the northwest side of the site.

EBA FILE: L12101928.001 | MARCH 2012 | ISSUED FOR USE

APPENDIX C PHASE I ENVIRONMENTAL SITE ASSESSMENT INFORMATION

HISTORICAL LAND TITLE CERTIFICATE

CURRENT TITLE WITH HISTORICAL DATA

S LINC SHORT LEGAL 0034 421 685 4;21;9;17;;11,14

LEGAL DESCRIPTION

MERIDIAN 4 RANGE 21 TOWNSHIP 9 SECTION 17 LEGAL SUBDIVISIONS 11 AND 14 CONTAINING 32.4 HECTARES (80 ACRES) MORE OR LESS EXCEPTING THEREOUT: PLAN NUMBER HECTARES ACRES MORE OR LESS SUBDIVISION 1013066 0.084 0.21 EXCEPTING THEREOUT ALL MINES AND MINERALS AND THE RIGHT TO WORK THE SAME

ESTATE: FEE SIMPLE

MUNICIPALITY: CITY OF LETHBRIDGE

REFERENCE NUMBER: 821 153 047

REGISTERED OWNER(S) REGISTRATION DATE(DMY) DOCUMENT TYPE VALUE CONSIDERATION

101 239 380 12/08/2010 SUBDIVISION PLAN

OWNERS

THE CITY OF LETHBRIDGE. OF 910 - 4TH AVE. SOUTH, LETHBRIDGE ALBERTA

ENCUMBRANCES, LIENS & INTERESTS

REGISTRATION NUMBER DATE (D/M/Y) PARTICULARS

871 177 437 28/09/1987 UTILITY RIGHT OF WAY GRANTEE - THE CITY OF LETHBRIDGE.

(CONTINUED)

4

3.1

TITLE NUMBER 101 239 380 +112

rR	NCUMBRANCES, LIENS & INTERESTS	
REGISTRATION	PARTICULARS	PAGE 2 # 821 153 047
951 080 304 06/04/1995	CORRECTION OF INSTRUMENT AFFECTS INSTRUMENT: 871177437 "PARTY NAME CHANGED FROM: THE CTTY TO: THE CITY OF LETHBRIDGE"	OF LETHBRIDGE
101 239 380 12/08/2010	SUBDIVISION PLAN 1013066 TITLE CANCELLED AS TO PART AND NEW FOR THE REMAINDER	TITLE ISSUED
TOTAL INSTRUMENTS: 003		

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 3 DAY OF FEBRUARY, 2012 AT 08:43 A.M.

ORDER NUMBER:20551563

CUSTOMER FILE NUMBER: 6887363

END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

s

HISTORICAL LAND TITLE CERTIFICATE

CURRENT TITLE WITH HISTORICAL DATA

TITLE NUMBER

821 153 047 A .

LINC SHORT LEGAL 0022 173 348 4;21;9;17;;13

LEGAL DESCRIPTION MERIDIAN 4 RANGE 21 TOWNSHIP 9 SECTION 17 LEGAL SUBDIVISION 13 EXCEPTING THEREOUT ALL MINES AND MINERALS AND THE RIGHT TO WORK THE SAME AREA: 16.2 HECTARES (40 ACRES) MORE OR LESS

ESTATE: FEE SIMPLE

MUNICIPALITY: CITY OF LETHBRIDGE

_____ REGISTERED OWNER(S) REGISTRATION DATE (DMY) DOCUMENT TYPE VALUE CONSIDERATION 821 153 047 03/09/1982 \$306,625 OWNERS THE CITY OF LETHBRIDGE. OF 910 - 4TH AVE. SOUTH, LETHBRIDGE ALBERTA -----ENCUMBRANCES, LIENS & INTERESTS REGISTRATION NUMBER DATE (D/M/Y) PARTICULARS _____ 2834IC . 19/09/1960 UTILITY RIGHT OF WAY GRANTEE - CANADIAN WESTERN NATURAL GAS COMPANY LIMITED. AS TO PORTION OR PLAN: 2602IC

6585IW . 29/04/1964 MORTGAGE OF UTILITY RIGHT OF WAY MORTGAGEE - MONTREAL TRUST COMPANY.

(CONTINUED)

"0.89 OF AN ACRE"

E	NCUMBRANCES, LIENS & INTERESTS
REGISTRATION NUMBER DATE (D/M/Y)	PAGE 2 # 821 153 047 A
	AFFECTS INSTRUMENT: 2834IC .
831 079 200 03/05/1983	UTILITY RIGHT OF WAY GRANTEE - ALBERTA HOME MORTGAGE CORPORATION. AS TO PORTION OR PLAN:8211477
871 177 437 28/09/1987	UTILITY RIGHT OF WAY GRANTEE - THE CITY OF LETHBRIDGE. AS TO PORTION OR PLAN:8711228 (DATA UPDATED BY: 951080304)
941 101 597 25/04/1994	DISCHARGE OF MORTGAGE OF UTILITY RIGHT OF WAY 6585IW.
951 080 304 06/04/1995	CORRECTION OF INSTRUMENT AFFECTS INSTRUMENT: 871177437 "PARTY NAME CHANGED FROM: THE CTTY OF LETHBRIDGE TO: THE CITY OF LETHBRIDGE"
TOTAL INSTRUMENTS: 006	

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 3 DAY OF FEBRUARY, 2012 AT 08:43 A.M.

ORDER NUMBER: 20551563

CUSTOMER FILE NUMBER: 6887363

END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

HISTORICAL LAND TITLE CERTIFICATE

8

CURRENT TITLE WITH HISTORICAL DATA

S LINC SHORT LEGAL 0022 352 389 4;21;9;17;;12

TITLE NUMBER 821 153 047 B .

LEGAL DESCRIPTION

MERIDIAN 4 RANGE 21 TOWNSHP 9 SECTION 17 LEGAL SUBDIVISION 12 IN THE NORTH WEST QUARTER CONTAINING 16.2 HECTARES (40 ACRES) MORE OR LESS EXCEPTING THEREOUT: UNPATENTED CROWN ROAD SHOWN ON GRANT 804F CONTAINING 0.809 OF A HECTARE (2.00 ACRES) MORE OR LESS EXCEPTING THEREOUT ALL MINES AND MINERALS AND THE RIGHT TO WORK THE SAME

ESTATE: FEE SIMPLE

MUNICIPALITY: CITY OF LETHBRIDGE

REGISTERED OWNER (S)

REGISTRATION DATE (DMY) DOCUMENT TYPE VALUE CONSIDERATION

\$291,294

821 153 047 03/09/1982

OWNERS

THE CITY OF LETHBRIDGE. OF 910-4 AVE S LETHBRIDGE ALBERTA

ENCUMBRANCES, LIENS & INTERESTS

REGISTRATION NUMBER	DATE (D/M/Y)	PARTICULARS
2834IC .	19/09/1960	UTILITY RIGHT OF WAY GRANTEE - CANADIAN WESTERN NATURAL GAS COMPANY LIMITED.

(CONTINUED)

ENCUMBRANCES, LIENS & INTERESTS

REGISTRATION NUMBER	DATE (D/M/Y)	PAGE 2 # 821 153 047 B . PARTICULARS
		AS TO PORTION OR PLAN:2602IC "FOR GAS PIPE LINES"
6585IW .	29/04/1964	MORTGAGE OF UTILITY RIGHT OF WAY MORTGAGEE - MONTREAL TRUST COMPANY. AFFECTS INSTRUMENT: 2834IC .
831 079 200	03/05/1983	UTILITY RIGHT OF WAY GRANTEE - ALBERTA HOME MORTGAGE CORPORATION. AS TO PORTION OR PLAN:8211477
941 101 597	25/04/1994	DISCHARGE OF MORTGAGE OF UTILITY RIGHT OF WAY 6585IW.
TOTAL INSTRUME	ENTS: 004	

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 3 DAY OF FEBRUARY, 2012 AT 08:43 A.M.

ORDER NUMBER:20551563

CUSTOMER FILE NUMBER: 6887363

END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

01-31-'12 08:34 FROM-PTMAA

780-425-4722

T-238 P0001/0001 F-456

Petroleum Tank Management Association of Alberta

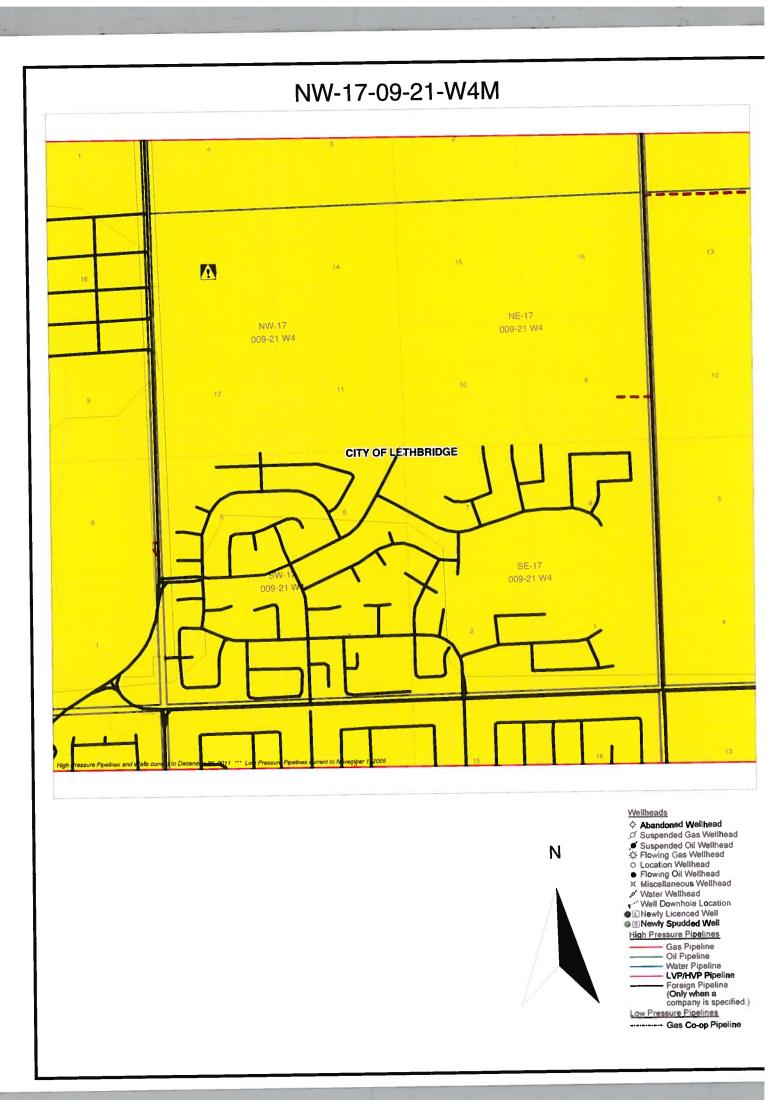
Suite 980, 10303 Jasper Avenue Edmonton, Alberta T5J 3N6 PH: (780)425-8265 or 1-866-222-8265 FAX: (780)425-4722

January 31, 2012

Michele Crawford EBA Engineering Consultants Ltd. 14940 123 Avenue Edmonton, AB T5V 1B4

Dear Michele Crawford:

As per your request, the PTMAA has checked the registration of active tank sites and inventory of abandoned tank sites and there are no records for the property with the legal land description:


NW 17-9-21-W4, Lethbridge

Please note that both databases are not complete. The main limitation of these databases is that they only include information reported through registration or a survey of abandoned sites completed in 1992 and should not be considered as a comprehensive inventory of all past or present storage tank sites. The PTMAA <u>cannot</u> guarantee that tanks do not or have not existed at this location. Information in the databases is based on information supplied by the owner and the PTMAA cannot guarantee its accuracy. Information on storage tanks or on past or present contaminant investigations may be filed with the local Fire Department or Alberta Environment.

Yours truly,

h

Connie Jacobsen PTMAA

ERCB Complaint / Spill Information

Page 1 of 1

		IPLAINT INCIDENTS OR	<u></u>	OPTIONS				
	<u>View</u>							
SPILL	Licensee Info							
ERCB NOTIFIED:	AUGUST 11, 1997	INCIDENT COMPLETE:	AUGUST 11, 1997	Print Screen				
LICENCE #:	2150 - 10 (Pipeline Lic	ence)		Close Screen				
LICENCEE:	ATCO GAS AND PIPE	LINES LTD. (SOUTH)						
SOURCE:	NATURAL GAS PIPEL	INE						
PIPELINE DAMAGE:	LEAK	PRESSURE TEST FAILURE?	NO					
PIPELINE OD:	323.9	PIPELINE WT:	5.56					
PIPELINE GRADE:	A		····					
CAUSE:	CONVERSION							
FAILURE TYPE:	GIRTH WELD FAILUR	E						
JURISDICTION:								
STRIKE AREA:	BROXB	FIELD CENTRE:	MEDICINE HAT					
# OF INJURIES:	0	# OF DEATHS:	0					
SPILL OFFSITE?	NO	SENSITIVE AREA?	NO					
PUBLIC AFFECTED:	CONVERSION FROM	CONVERSION FROM ENV SYSTEM						
WILDLIFE AFFECTED:	CONVERSION FROM	CONVERSION FROM ENV SYSTEM						
AREA AFFECTED:	CONVERSION FROM	CONVERSION FROM ENV SYSTEM						
ENVIRONMENT AFFECTED:								
# EVACUATED:		CLEANUP DATE:	AUGUST 11, 1997					
SUBSTANCES SPILLED:	1 (1000m ³) GAS PRO	DUCTION (RAW) (0 (1000m ³) F	RECOVERED)					

Page 1 of 1

ERCB DATA ATTACHE	D FILES		423.77			Close Scre	
						OPTIONS	
	ERCB PIPE					<u>View Company</u> Info	
LICENCE/LINE #:	2150 - 12		PERMIT DATE:	OCTOBER 30	, 2007	View Installation	
ABACUS #:			LICENCE DATE:	SEPTEMBER	27, 2007	Info	
COMPANY:	ATCO GAS A	ND PIPELI	NES LTD. (SOUTH	1)		View Estire	
FROM LOCATION:	16-19-009-21 W4M BE		TO LOCATION:	01-18-009-21 W4M BE		View Entire Licence	
LENGTH:	3.12 kms	1.94 mi	STATUS:	Α			
SUBSTANCE:	NG		H2S:	0 mol/kmol	0 ppm	View Licence	
OD:	219.1 mm	8.63 "	WT:	9.99 mm	0.39 "	<u>Ticket</u>	
MATERIAL:	S		TYPE:	UUUUUU		View Spill	
GRADE:	UUUU		MOP:	0 kPa	0 psi	View Spill Incidents	
JOINTS:	W	W I		U			
STRESS LEVEL:	0%		ENVIRONMENT:			Highlight Line	
ORIGINAL PERMIT DATE:			CONST. DATE:				
ORIGINAL LICENCE/LINE #:	0-0		NEB REG:	No		Highlight Entire Licence	
						Print Screen	

2/9/2012

ERCB DATA ATTACHED	HLES						
						OPTIONS	
	ERCB PIPE					View Company Info	
LICENCE/LINE #:	2150 - 8		PERMIT DATE:			View Installation	
ABACUS #:			LICENCE DATE:	JANUARY 9,	2003	Info	
COMPANY:	ATCO GAS	AND PIPEL	INES LTD. (SOUTH				
FROM LOCATION:	14-29-009-21 W4M PL		TO LOCATION:	12-17-009-21 W4M PL		View Entire Licence	
LENGTH:	3.88 kms	2.41 mi	STATUS:	0		View Licence	
SUBSTANCE:	NG		H2S:	0 mol/kmol 0 ppm		Ticket	
OD:	323.9 mm	12.75 "	WT:	6.35 mm	0.25 "		
MATERIAL:	S		TYPE:	5L		View Spill Incidents	
GRADE:	2411		MOP:	2070 kPa	300 psi		
JOINTS:	W		INTL COATING:	U		Highlight Line	
STRESS LEVEL:	22 %		ENVIRONMENT:			Highlight Entire	
ORIGINAL PERMIT DATE:			CONST. DATE:			Licence	
ORIGINAL LICENCE/LINE #:	2150 - 8		NEB REG:	No			
						Print Screen	

1/30/2012

Skip To Navigation

Skip To Content

Case in renear a lacity

Environment

Alberta.ca > Environment > ESAR > Search

- Search Form
- Map Search

Alberta Township System (ATS) Search

W 4 - 21 - 9 - 17 -[NW] -[] Search ATS

Format: MER-RGE-TWP-SEC-[QTR]-[LSD] |] denotes that the quarter section and legal subdivision are optional.

Plan Block Lot (PBL) Search

Search Results

0 Result(s)

No results found for this ATS.

Document Results

A marker identified as ESA is the location of a site where Alberta Environment has received scientific and/or technical information. A marker identified as REC is the location of a site where Alberta Environment has received an application for a reclamation certificate.

General Help

An ESA document does not necessarily mean the site is, or ever was, contaminated. Please refer to the studies and reports to determine the condition of the site.

Comments and questions can be directed to: ESAR-Support@gov.ab.ca

The main part of this search page is organized into panels on the left.

Document searches can be performed by Alberta Township System (ATS) or by Plan Block Lot (PBL). Click on a heading on the left to open up the panel for your desired search type.

Site search results and document results are also organized in panels.

ATS Help

The Alberta Township System (ATS) format is as follows:

 MER - (Meridian)
 (West of the 4th,5th or 6th)

 RGE - (Range)
 (1-30)

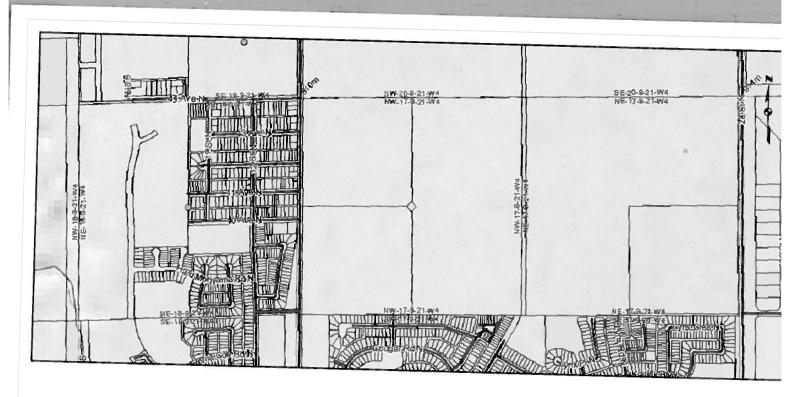
 TWP - (Township)
 (1-126)

 SEC - (Section)
 (1-36)

 QTR - (Quarter Section)
 (N,S,E,W,NE,NW,SE,SW)

f Alb	erta	a 🔳	accuracy	y		ined in this report. The f be retained in a public d		responsibility for	its	GIC Well ID GoA Well Tag N Date Report Re		106315
Well Ident Owner Nam #6 GALT M	e	ind Loc	ation	Add	dress		Town		P	rovince		urement in Impo al Code
Location	1/4 or NW	LSD	SEC 17	<i>TWP</i> 009	<i>RGE</i> 21	4	ot Bloc		Additi	onal Description		
Measured fr	om Bound	ft fr	om			GPS Coordinates i Latitude <u>49.738</u> How Location Obtain Not Verified	242 Lon	ees (NAD 83) nitude <u>-112.81</u>	8239	Elevation How Elevation O Not Obtained		<u>ft</u>
Drilling Inf Method of I Unknown		THE			be of Worl known	r			Proposed Unknown	Well Use		
Formation Depth from ground level (ft)	Log Water Bearing			Lithology	Meas	urement in Imperia	Total De 377.00 s Boreho	le	nished Well	Depth Start Dat		End Date 1908/04/01
214.00	bearing	Unknov	'n	Litilology	Descriptio		D	ameter (in) 0.00		From (ft) 0.00		To (ft) 377.00
242.00		Gravel					Surface	Casing (if app	licable)	Well Casing	g/Liner	
354.00		Shale										0.00
355.00		Coal					JAZER T	Size OD :	0.00 in 0.000 in	-	e OD :	
373.00		Shale						nickness :	3 ⁴ 0	-	rop at : _	
376.00		Coal					'	ottom at :	0.00 h	-	om at :	0.00 ft
377.00		Shale	nandraras al daarii Madaana alfiik				Perfora	ions		Dolla	-	0.00 11
							Fro	m (ft)	To (ft)	Diamete	r (in)	Interval (in)
								Seal d from mount	0,00 ft to	0 <u>00 ft</u>	_	
								Туре			At	(ft)
							Screen		0.00			
								Size OD : From (ft)	0.00 in	To (ft)		Slot Size (in)
								achment Fittings		Bottom Fi	ittings	
							Pack Type Amou	nt		Grain Size	e	

 7. Contractor Certification
 Certification No


 Name of Journeyman responsible for drilling/construction of well
 Certification No

 UNKNOWN NA DRILLER
 1

 Company Name
 Copy of Well report provided to owner

 UNKNOWN DRILLER
 Date approval holder signed

Printed on 1/30/2012 1:46:37 PM

Legend

Groundwater Well 0 Selection or Drawing area Selected Groundwater Well 0 Information as depicted is subject to change, therefore the Government of Alberta **Groundwater Information Centre Map** assumes no responsibility for discrepancies at time of use. Base Data provided by Spatial Data Warehouse Ltd. Road Network data provided by GeoBase® Alberta Environment Projection ALBERTA 10TM Datum Date © 2009 Government of Alberta NAD 83 2012-Jan-30

http://www.envinfo.gov.ab.ca/GroundWater/#

Page 1 of 1

Last Update/Review: April 1, 2000

Authorization /Approval Viewer

For advanced search help see: <u>Authorization /</u> <u>Approval Viewer Help</u>

The search used the following values:

Legal Land Location: M: 4 Rge: 21 Twp: 9 Sec: 17 QS: NW Show Inactive Authorizations / No Approvals:

The resulting Authorizations / Approvals based on the search criteria will be displayed below. A in will appear next to the Authorization / Approval when documentation is available for viewing or downloading. Please click <u>Authorization / Approval Viewer</u> Help if you encounter problems viewing the approval document.

The documents referenced from this page are in Adobe Acrobat Writer (.pdf) format. Click

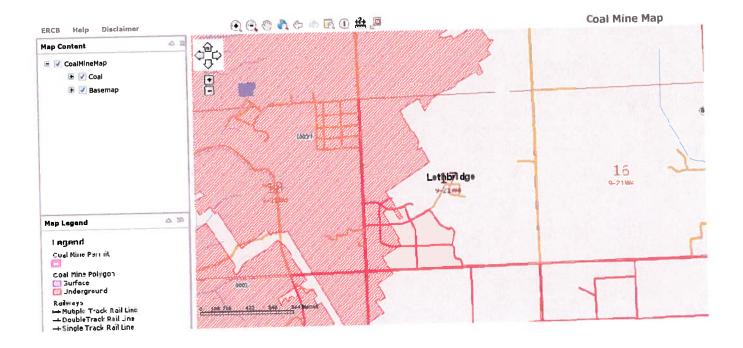
on Reader to download Adobe Acrobat Reader.

No records match the search criteria.

Back to Search Page | Protection and Enforcement | Water | Top of Page

Comments regarding the Alberta Environment Authorization / Approval Viewer page may be directed to the Regulatory Approvals Centre <u>RAC.Environment@gov.ab.ca</u>

Copyright ? 2012 Government of Alberta



http://envext02.env.gov.ab.ca/pls/xedp_apv/avwp_avwh1000_02.actionquery

1/30/2012

ERCB Coal Mine Map Viewer

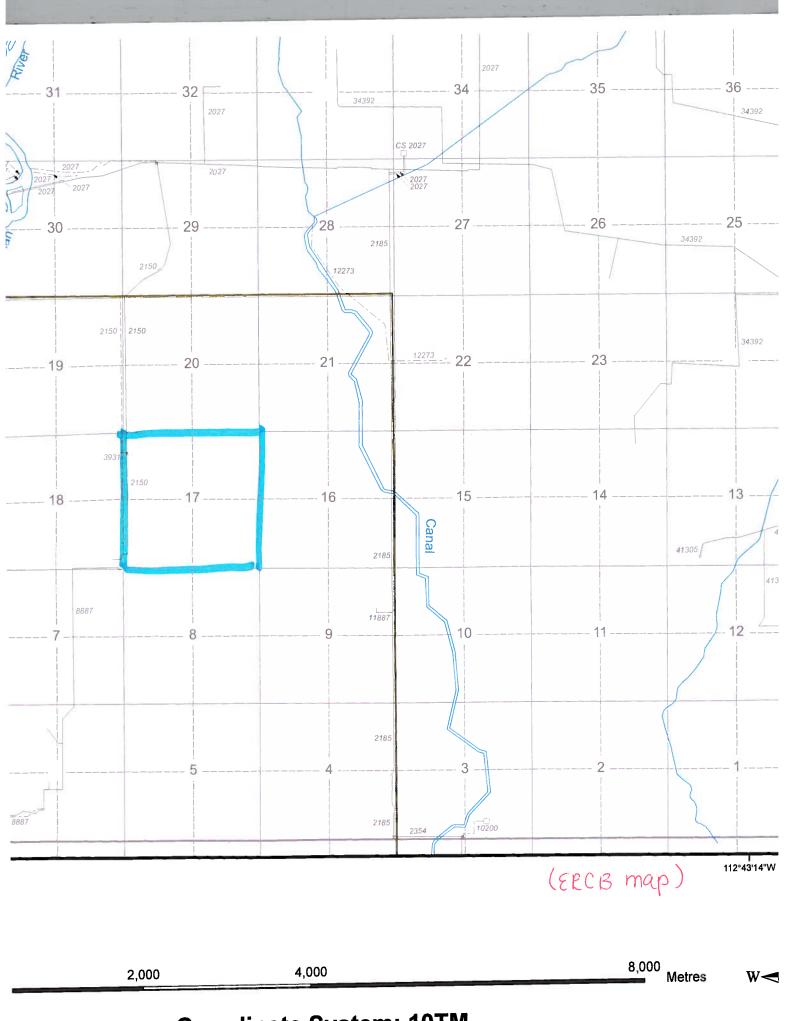
Page 1 of 1

RX1000 Date Printed: 07 Feb 2012

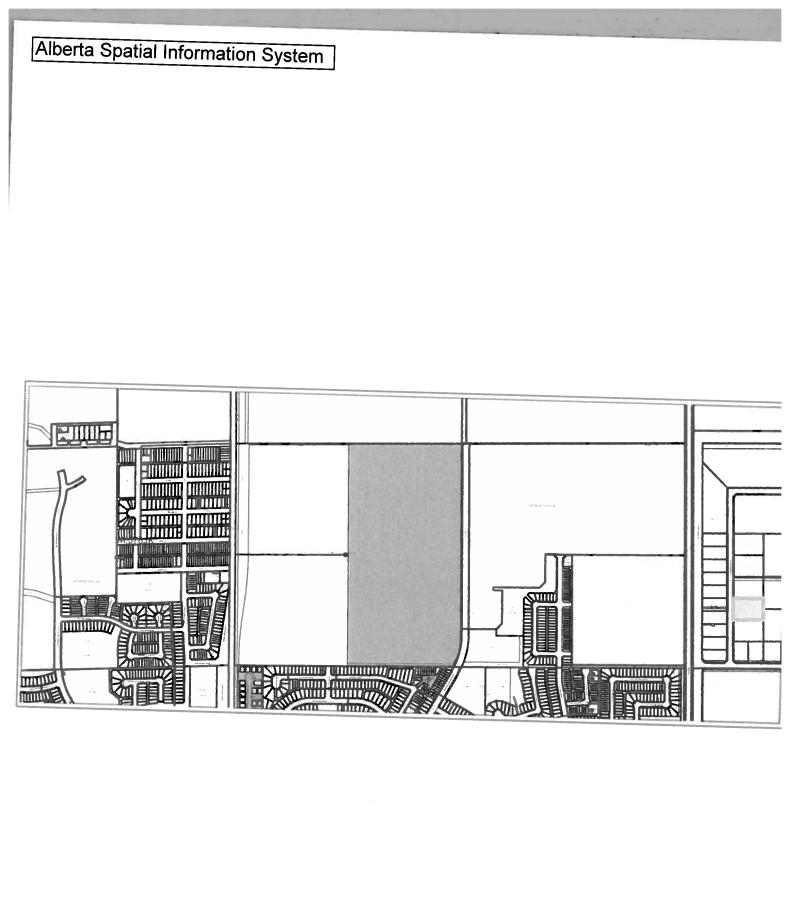
Energy Resources Conservation Board FIS RELEASE INCIDENT EXTERNAL RECORD REPORT

Page 589 of 29981

19750822 Incident Number Incident Type Location Licence Number Licence Type Incident Date Incident Notification Date Incident Complete Date Source Cause Failure Type **Injury Count** Fatality Count Field Centre Jurisdiction Strike Area Licensee Pipeline Lic Segment ID **Pipeline Lic Line No** Damage Type **Test Failure** Pipeline OD (mm) Pipe Grade Wall Thickness (mm) Volume Released 2.8 103m3


Release 07-24-009-20W4 0044335 Well Licence 02 Jul 1975 02 Jul 1975 04 Jul 1975 Gas Well **Conversion Conversion** Blowdown 0 n Medicine Hat **Crown Public Lands** LEOPARD 0R46 Husky Oil Operations Limited Substance Released Gas Production (Marketable) Volume Recovered 0.0 103m3 Substance Released Salt/Produced Water Volume Released 1.0 m3 Volume Recovered 0.0 m3

Substance Released Waste Volume Released 0.0 m3 Volume Recovered 44.0 m3 Substance Released Salt/Produced Water Volume Released 100.0 m3 Volume Recovered 82.5 m3 Yes **Release Offsite** Air/Land **Environment Affected** No Sensitive Area Wildlife/Livestock Affected Conversion from ENV system Conversion from ENV system **Public Affected** Conversion from ENV system Area Affected Public Evacuated Count


Release Cleanup Date

04 Jul 1975

Incident Number 19972884 Release Incident Type 13-17-009-21W4 Location 2150 Licence Number **Pipeline Licence** Licence Type 11 Aug 1997 Incident Date 11 Aug 1997 Incident Notification Date Incident Complete Date 11 Aug 1997 Natural Gas Pipeline Source **Conversion Conversion** Cause Girth Weld Failure Failure Type 0 **Injury Count** 0 **Fatality Count** Medicine Hat **Field Centre** Jurisdiction BROXB Strike Area 0144 ATCO Gas and Pipelines Ltd. (SC Licensee 5787 **Pipeline Lic Segment ID** 10 Pipeline Lic Line No Leak Damage Type No **Test Failure** 323.9 Pipeline OD (mm) А Pipe Grade 5.56 Wall Thickness (mm) Substance Released Gas Production (Raw) Volume Released 1.0 103m3 Volume Recovered 0.0 103m3 Substance Released Salt/Produced Water Volume Released 1.0 m3 Volume Recovered 0.0 m3 Substance Released Waste Volume Released 0.0 m3 Volume Recovered 44.0 m3 Substance Released Salt/Produced Water Volume Released 100.0 m3 Volume Recovered 82.5 m3 **Release Offsite** No **Environment Affected** No Sensitive Area Wildlife/Livestock Affected Conversion from ENV system Conversion from ENV system Public Affected Conversion from ENV system Area Affected Public Evacuated Count 11 Aug 1997 **Release Cleanup Date**

Coordinate System: 10TM

Parcel Locator Map Print Page

Lethtridge NW-17-9-21-W4M

DISCLAIMER: This map is illustrative only. The City of Lethbridge offers this information in good faith, but makes no warranty or representation, expressed or implied, with regard to the correctness, accuracy and/or reliability of this data. All rights reserved. No part of this map may be reproduced in any form or by any means without written consent from the City of Lethbridge.

© 2012, City of Lethbridge, AB Canada

Printed using the City of Lethbridge Property Information Ma

EBA FILE: L12101928.001 | MARCH 2012 | ISSUED FOR USE

APPENDIX D SPECIAL ATTENTION ITEMS – BACKGROUND INFORMATION

BACKGROUND INFORMATION

DI POLYCHLORINATED BIPHENYLS [PCBS]

The federal Environmental Contaminants Act (1976) has restricted the use and controlled the phase out of polychlorinated biphenyls (PCBs) in Canada. Additionally, the storage and disposal of PCBs is regulated. The Act prohibited the use of PCBs in electrical equipment installed after July 1, 1980. PCBs are commonly found in light ballasts, electrical transformers (pole or ground-mounted) and various other types of electrical equipment (i.e., rectifiers) dating back to the early 1980s or earlier.

PCB containing light ballasts or electrical equipment should be disposed of appropriately at the end of their useful life.

D2 OZONE-DEPLETING SUBSTANCES [ODS]

In December of 1998, The Government of Canada enacted the Ozone-depleting Substances (ODS) Regulations, which governs the use, handling, and release of ODS. ODS may include, but are not limited to, chlorofluorocarbons (CFCs), halons, carbon tetrachloride, and methyl bromide. ODS are usually associated with operations such as: fire extinguishing systems; foam manufacturing; fumigant and pesticide application; prescription metered dose inhalers; refrigeration and air conditioning units; and solvent cleaning and degreasing facilities. ODS are not a health issue for people in the building, but are more a maintenance issue to limit or prevent their release. This is accomplished by regular maintenance by trained personnel.

D3 RADON

Radon gas is a product of the decay series that begins with uranium. Radon is produced directly from radium that is often found in bedrock that contains black shale and/or granite. The gas and its by-products occur naturally everywhere, in soil, water, and air, but usually in concentrations too low to pose a threat. Radon gas can migrate through the ground and enter buildings through porous concrete or fractures. Certain building materials including concrete and gyprock can also release radon. Natural radon concentrations are low in Alberta and radon gas concentrations are usually well below target limits set for Canada. Potential anthropogenic sources of radon gas should be considered.

D4 METHANE

Methane gas is a product of anaerobic decomposition of organic material (e.g., buried fill high in organic material). Methane is also associated with natural gas deposits. Methane gas can migrate through the ground and enter buildings through porous concrete, joints, or fractures. Methane presents a potential explosive hazard when it accumulates to concentrations greater than the lower explosive limit (LEL) in the presence of an ignition source.

BLACKWOLF STAGE 2 OUTLINE PLAN

F

Statement of Justification for Historical Resources Act

Statement of Justification for *Historical Resources Act* Requirements for projects other than small-scale oil and gas

This document contains sensitive information about Historic Resources that are protected under the provisions of the *Alberta Historical Resources Act*. This information is to be used to assist in planning the proposed project only. It is not to be disseminated, and no copies of this document are to be made without written permission of the Historic Resources Management Branch, Alberta Culture and Community Spirit.

Project Name or Project Identi					
North Lethbridge Subdivision NW 17-9-21 W4					
Disposition Type & Number: n/a					
Name: Neil Mirau	Name: Neil Mirau				
Corporate name of consulting company: Arrow Archaeology Limited					
Phone number: 403 345 2812					
Fax number: 403 345 2817					
E-mail address: nmirau@shaw.ca					
Name of proponent contact: Michael Kelly, Manager					
Company: The City of Lethbridge					
Address: 910-4 th Avenue South, Lethbridge Alberta					
Phone number:403-329-7355					
Fax number:					
E-mail address: land@lethbridge.ca					
Name of agent: Devin Huber					
Corporate name of agent: Stantec					
Address: #290, 220-4 Street S., Lethbridge, Alberta T1J 4J7					
Phone number: 403 329 3344					
Fax number: 403 328 0664					
E-mail address: devin.huber@stantec.com					
Lands Affected					
Legal Description	Land Ownership Type	HRV			
11,12,13,14-17-009-21 W4	freehold	No assigned			

Activity type and Anticipated Ground Disturbance

The area is a planned residential subdivision. The current surface will be completely disturbed by new development including roads, buildings and subsurface infrastructure. This review considers the nature of these impacts including the installation of relatively deep infrastructure including water and sewer and other underground services for the subdivision.

value

Project size

Approx. 65 ha

Existing Disturbance

The proposed subdivision is entirely in cultivated land. Although the date that it was first cultivated is unknown, it has been actively cultivated since at least 1950 and the eastern portion of the subdivision was cultivated before 1939, The western portion, i.e. LSs 12 and 13 appear to have been broken for the first time

between 1939 and 1950. Since the subject land quarter section was broken in the first half of the 20th century, it does not appear to have had any other use than cultivation. See air photos below.

Landscape and Environmental Information

The subdivision is within the limits of the City of Lethbridge and is located on level prairie upland, approximately 1 km east of the break of slope to the Oldman River valley and is just east of the northwest Lethbridge neighbourhood of Hardieville. The modern channel of the Oldman River is approximately 2.5 km from the western boundary of the subdivision. There are no other culturally important or significant topographic features within 5 km of the subdivision area.

Surface and near surface sediments are primarily glaciolacustrine with minor amounts of Holocene aeolian sediments overlying the glaciolacustrine silts and clays which in turn overly glacial ground moraine/till deposits. Although not analyzed in detail, aeolian deposits are composed of primarily silt-sized particles and may date to as recently as the 20th century. There is no evidence of earlier Holocene sandy bluff-top deposits seen elsewhere east of the Oldman River valley in the general area of the City of Lethbridge.

Soil in the area is typically Brown Chernozemic. Some lithic clasts have been observed at the surface in the subdivision area. The observed lithic types (primarily granites, quartzites, gneisses) were transported to the area by Laurentide ice during the Pleistocene Epoch. The subdivision area is approximately 910 masl.

The general area is within the Mixed Grass Prairie ecoregion of southern Alberta and native vegetation would have been the normal suite of short and medium height grasses common in the plains of southwestern Alberta. (*Stipa, Agropyron* spp. and other species commonly found with these grasses).

Archaeological Resources

The proposed project area is located within Borden Block DkPe which has 61 recorded sites.

Borden #	HRV	Relationship to activity (distance and direction from project)	Anticipated Impacts
DkPe-17	0	within project area	see below
DkPe-18	0	within project area	see below
DkPe-19	0	ca. 1 km southeast of project area	None
DkPe-20	0	ca. 500 m from project area	None
DkPe-21	0	ca. 500 m from project area	None
Historic Structure(s)		e(s)	Anticipated Impacts
none			none

Permit Number(s)	Relationship to proposed development footprint
80-043	within project area and adjacent sections.

Illustrative Materials

Project area map, topographic map sections, air photos, satellite images, photos

Evaluation

The section in which this proposed development is located has no Historical Resource Value according to the *Listing of Significant Historical Sites and Areas* (2012 edition).

The proposed subdivision is located on level glaciolacustrine terrain that has been under more or less continuous cultivation for more 60 years. There are no archaeologically significant topographic features or other aspects of the area that would suggest that the area has potential to contain surface or buried historical resources. This area has low potential to contain undisturbed archaeological or other historical resources and there is no probability that the project will impact any fossiliferous bedrock.

Sites DkPe 17 and 18 are located within the project area and sites DkPe 19, 20 and 21 are located within 1 km of project area. These sites were recorded in 1980 under permit 80-43 during a general examination of areas of north Lethbridge slated for future development. This historical resources impact assessment was completed for the North Lethbridge Urbanization Report completed in 1980. All five of these sites were recorded as scatters of firebroken rock located in cultivation. No features, lithic debitage or other materials were recorded and these sites have been assigned an HRV of 0. The subject quarter was within the survey area of the project completed under permit 80-43. Since DkPe 17 and 18 are HRV 0 sites and consisted minor, out of context, disturbed and questionable cultural materials, they are not significant in terms of the history or archaeology of this area.

Based on the results of that work, the current and recent land use and considering the overall biogeophysical situation of this quarter section, there is little potential for the presence of historical resources at or near the surface in this area.

We examined available historical air photos for this area and searched local history books, but found no evidence that the subject lands were used for a homestead, farmyard or other buildings. Hardieville School, originally constructed in 1912 was located just south of this subdivision area. The building was demolished in the last several years and the school's footprint is now within an existing residential subdivision.

The geomorphology of this area, specifically that the project area is located on

thin Holocene Epoch deposits overlying culturally sterile Pleistocene glacial and glaciolacustrine deposits means that the area has low potential to contain any intact cultural materials below the modern plough zone.

Palaeontological Sensitivity

The subdivision is located entirely on glaciolacustrine and postglacial, mostly aeolian, sediments and there is no exposed bedrock in or near the area. The subdivision is therefore considered to have low palaeontological potential and sensitivity. It is estimated that Cretaceous bedrock is more than 10 m below glacial and glaciolacustrine deposits in this area.

Recommendations A Historical Resources Impact Assessment is not recommended and we recommend clearance for this project; however, pursuant to Section 31 of the *Alberta Historical Resources Act*, should historic resources be discovered during construction the Historic Resources Management Branch of Alberta Culture is to be contacted immediately.

Our recommendation for clearance without a Historical Resources Impact Assessment is based on the data and information provided in this report.

(Recommendations regarding archaeological resources must be made by a professional archaeologist.)

5	
Recommendations made by:	Date:
Neil Mirau, Arrow Archaeology Limited	November 23, 2012

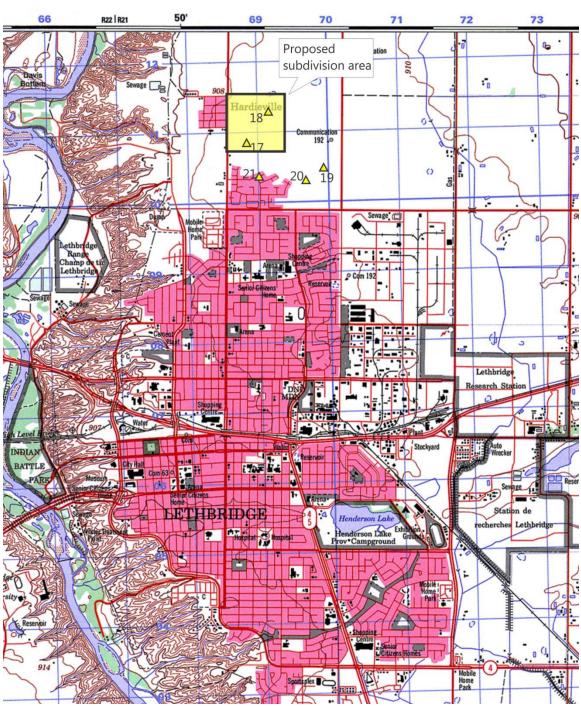


Figure 1. Project location shown in yellow on NTS 82H/10 1:50000 map sheet section.

Figure 2. Satellite image of the project area. Subdivision area outlined in yellow. See following images. Hardieville just west (left) of subdivision area.

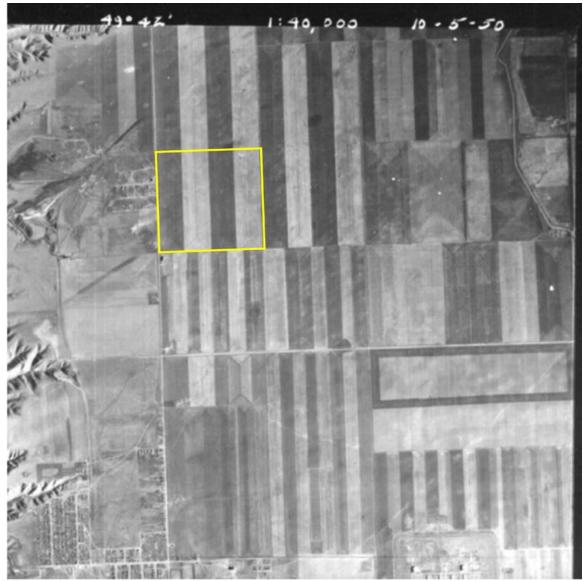


Figure 3. 1950 air photo showing project area (outlined in yellow), orientation of photo same as satellite image above. Cultivation of project area is obvious in this photo.

Figure 4. 1939 air photo of project area (outlined in yellow). The eastern half of the proposed subdivision was cultivated as of the date of this photo however the western half appears to be native grassland, albeit slightly disturbed by trails.

Figure 5. View south western portion of project area running parallel to 13th Street North.

Figure 6. View southeast of project area. Uplands neighborhood visible in the distance.

Figure 7. View east view of project area showing cultivated field and neighborhood of Uplands on the distant right.

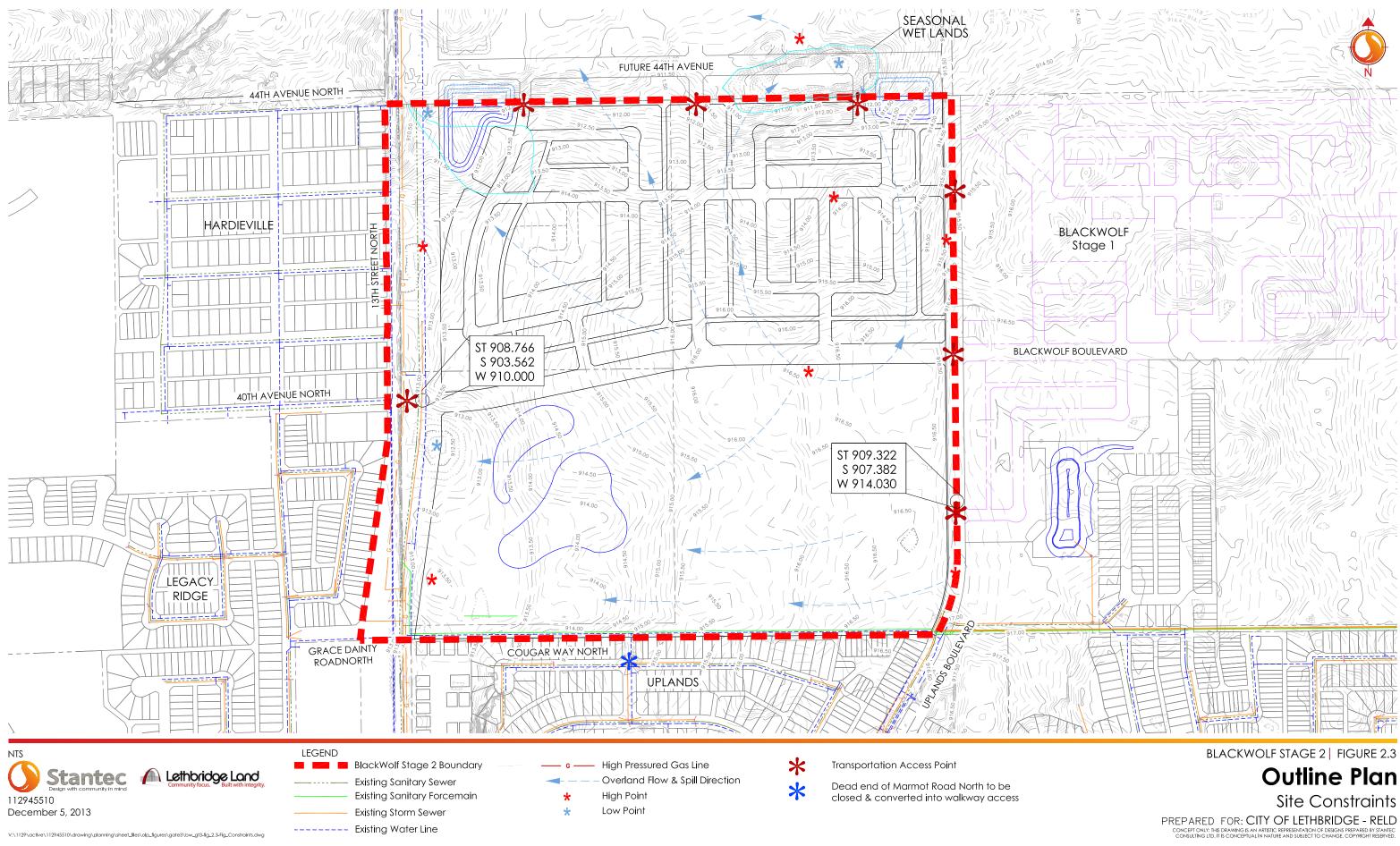

Figure 8. View northeast of project area taken from 13th Street north.

Figure 9. Close up of the northeast view of project area showing its recent use for cultivation of grains.

Figure 10. View north of the western side of the project area, Hardieville is visible on left side of image.

BLACKWOLF STAGE 2 OUTLINE PLAN

Wetland Classification and Delineation Assessment

November 21, 2013

Stantec Consulting Ltd. 290, 220 – 4 Street South Lethbridge, AB TIJ 4J7 ISSUED FOR USE EBA FILE: 704-ENVIND03027-01 Via Email: devin.huber@stantec.com

Attention: Mr. Devin Huber

Subject: Wetland Classification and Delineation Assessment for the Lands North of Uplands NW 17-9-21 W4M

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Stantec Consulting Ltd. and their agents. EBA, Engineering Consultants Ltd. does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than Stantec Consulting Ltd., or for any project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. This report is subject to the terms and conditions of the Master Consulting Terms and Conditions executed between Stantec Consulting Ltd. and EBA Engineering Consultants Ltd.

I.0 INTRODUCTION

EBA Engineering Consultants Ltd., operating as EBA, A Tetra Tech Company (EBA) was retained by Stantec Consulting Ltd. (Stantec) to assess two suspected wetland locations within a proposed residential subdivision [Lands North of Uplands (the Project)], located in NW 17-9-21 W4M (the Project Site), in North Lethbridge, Alberta (Figure 1). The two suspected wetlands (Figure 2) were identified as part of a Phase I environmental site assessment (ESA) prepared for the Project Site by EBA (EBA, A Tetra Tech Company 2012)., Suspected). The objective of this assessment is to confirm the presence of these wetlands, and if present, conduct a wetland impact assessment (including classification and delineation of identified on-site wetlands) and provide permitting support relative to the Alberta *Water Act*.

According to Alberta's Provincial Wetland Restoration/Compensation Guide, a 'wetland' is land that is saturated with water long enough to promote wetland or aquatic processes as indicated by poorly drained soils, hydrophytic vegetation and various kinds of biological activity which are adapted to a wet environment (Alberta Environment and Sustainable Resource Development [ESRD] 2007). Lands meeting these criteria are typically subject to the *Water Act* application process.

2.0 METHODS

2.1 Desktop Review

2.1.1 Historical Aerial Photography Review

EBA reviewed historical aerial photographs of the Project Site (captured 1950, 1961, 1970, 1979, 1988, 1999, 2013; Figure 3), and identified suspected wetland areas with potential to be impacted by the Project and determined surrounding land uses. Review of the aerial imagery for the Project Site assisted with determining the historical ecological context of the suspected wetlands to identify any changes over time (e.g., natural or anthropogenic).

2.1.2 Vegetation Resources

A search of the Alberta Conservation Information Management System (ACIMS) database was conducted to determine if there were any historical occurrences of vegetation elements of conservation concern recorded within the Project Site (Alberta Parks Tourism and Recreation [ATPR] 2013a and 2013b). Vegetation elements of conservation concern include ecological communities and species elements for which data has been collected, reviewed and given a conservation rank based on how rare or common the element may be (ATPR 2013c). Those elements that current data suggests may be rare are placed on a tracking or watch list (ATPR 2013b).

2.1.3 Wildlife Resources

A search of the Fish and Wildlife Management Information System (FWMIS) database was conducted to determine if there were any historical occurrences of observations of species of conservation concern recorded within a nine kilometre (km) radius of the Project Site (ESRD 2013). Species of conservation concern include those listed as 'At Risk', 'May Be At Risk' or 'Sensitive' under the General Status of Alberta Wild Species (GSAWS) (Alberta Sustainable Resource Development 2011) or those listed as 'Endangered', 'Threatened' or 'Species of Special Concern' under Alberta's *Wildlife Act* (2000) or the federal *Species at Risk Act*.

2.2 Field Survey

A site visit was conducted to identify the suspected wetlands and to determine if they met the criteria described in Section 2.0. This included a meander around and through each suspected wetland; recording vegetation and incidental wildlife species observed; using a soil hand auger to a depth of 30 centimetres (cm) to determine soil moisture characteristics and evidence of water modified soil conditions (i.e., mottling or gleying); and noting characteristics of wetland function (e.g., habitat, water quality improvement).

3.0 **RESULTS**

3.1 Desktop Review

3.1.1 Historical Aerial Photography Review

A review of historical aerial photography indicates that, over the past 50 years, land use within the Project Site has been primarily characterized by agricultural development (Figure 3). Aerial photos from 1950 suggest the outline of a wetland on the northern boundary (Suspected Wetland 2); however, it appears to be cultivated. Aerial imagery from 1970 suggests cultivation extends around Suspected Wetland 2 and, by 1979, it appears to contain water. In 1988, it is smaller, appears to contain no water and is no longer visible within the Project Site; the portion that is visible is located on the adjacent property to the north. In 1999, Suspected Wetland 2 has been cultivated through and there is a powerline visible along the north side of the Project Site. Additionally, there seems to be a low area (Suspected Wetland 1) on the west side of the Project Site but there is no evidence of it containing water. In 2005, both suspected wetlands are cultivated through and are only slightly visible on aerial imagery. In 2013, both suspected wetlands continue to be cultivated through.

3.1.2 Vegetation and Soils Resources

A search of the Alberta Conservation Information Management System (ACIMS) database revealed that no historical occurrences of vegetation elements of conservation concern have been recorded within the Project Site (ATPR 2013a and 2013b).

3.1.3 Wildlife Resources

A FWMIS search revealed that the Project Site is located within Sensitive Amphibian Ranges, Sensitive Raptor Ranges and Sharp-tailed Grouse Survey Areas, with eighteen wildlife species of conservation concern known to occur within 9 km of the Project Site (ESRD 2013), two of which are wetland-dependant: northern leopard frog (*Rana pipiens*) and painted turtle (*Chrysemys picta*).

3.2 Field Survey

The site visit took place on October 23, 2013, during partly cloudy conditions with a temperature of between seven and 10 degrees Celsius. Complete plant and wildlife inventories were not recorded due to late survey timing. Photos were taken of each suspected wetland and surrounding land use (Photos 1 to 5).

Suspected Wetland 1 was dry at the time of assessment and contained two sanitary sewer manholes (Photographs 1, 2 and 3). The area within a few feet of the wells had been cropped with common wheat (*Triticum aestivum*). The area immediately surrounding the wells contained primarily common wheat and weeds such as Canada thistle (*Cirsium arvense*) and wild oats (*Avena fatua*). Soils augered to a depth of 30 cm were relatively dry and contained very little to no mottling. There were no rare plants or vegetation elements of conservation concern observed during the field survey.

Suspected Wetland 2 is confined to SW 20-09-21 W4M, north of the Project Site (Photos 4 and 5). There is a gradient, sloping upwards from the suspected wetland location in SW 20-09-21 W4M southward to the powerline right-of-way bordering the Project Site. The suspected wetland area identified as part of the Phase I ESA within the Project Site is dry and the soils are not mottled. The depression in SW 20-09-21 W4M is cropped through with common wheat. In addition to common wheat, three individual cattails (*Typha latifolia*) were observed, broken off near the base, in the centre of the depression. Soils within the depression contained a considerable amount of mottling. This offsite portion is likely a Class II Temporary Wetland according to the Classification of Natural Ponds and Lakes in the Glaciated Prairie Region (Stewart and Kantrud 1971); however, the wetland has been modified by anthropogenic activity (due to cultivation).

One mouse (*Peromyscus* spp.) was observed within Suspected Wetland 1. Many (10+) mouse/rodent burrows were also observed around and between the sewer manholes. No evidence of wildlife was observed within Suspected Wetland 2. There were no amphibian species observed during the field survey.

4.0 **DISCUSSION**

Although the timing of the site visit was not typical for a wetland classification and delineation assessment, EBA's confidence level with respect to the characterization of any on-site wetlands is high, based on historical air photo review and observed on-site conditions.

Historically, both suspected wetlands seem to have been impacted by cultivation. Cultivation can impact wetland function by altering soil moisture and vegetation. Suspected Wetland 1 appears to have been cultivated through from 2005 (or earlier) to present. It currently does not contain hydrophytic vegetation or hydric soils and therefore is not considered to be a functioning wetland. Suspected Wetland 2 has been cultivated through periodically since 1950 and consistently from 1999 to present. The period of time (1970 to 1979) when cultivation extended around the wetland allowed water to accumulate; however, based on current site conditions, the on-site portion of Suspected Wetland 2 identified in the Phase I ESA is not considered to be a functioning wetland.

The off-site portion of Suspected Wetland 2 contained mottled soils and a limited cover of hydrophytic vegetation at the time of assessment. It was cropped through with common wheat. Based on the historical aerial photo review and observation of current conditions, this area of Suspected Wetland 2 likely has the defining characteristics of a wetland but, given the history of cultivation, it is likely low in value with respect to wetland function. It is recommended that the results of this assessment be reviewed by ESRD to determine if any obligations, pursuant to the Water Act (including mitigation measures), are required with respect to the off-site portion of Suspected Wetland 2 prior to construction. No vegetation or wildlife species observed during the field survey are listed according to GSAWS (ESRD 2011), the federal *Species at Risk Act*, or the Alberta *Wildlife Act*, although they would not be expected to be present in late October.

Based on the background review and observation of current on-site conditions, it is unlikely that an application under the Alberta *Water Act* will be required for the on-site areas investigated as part of this assessment; however, EBA recommends that the findings of this report be reviewed with ESRD.

5.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, EBA Engineering Consultants Ltd.

Myudey Shimff

Prepared by: Aynsley Shirriff, B.Sc., B.I.T., EPt Biologist – Wildlife and Vegetation Discipline Environment Practice Direct Line: 403.723.1543 aynsley.shirriff@tetratech.com

Reviewed by: Clint Gellrich, B.Sc., P.Biol. Biologist – Wildlife and Vegetation Discipline Environment Practice Direct Line: 403.329.9009 x226 clint.gellrich@tetratech.com

/anm

the brage

Reviewed by: Hilary Gregg, B.Sc., B.I.T., EPt Biologist – Wildlife and Vegetation Discipline Environment Practice Direct Line: 403.723.1513 hilary.gregg@tetratech.com

REFERENCES

Literature Cited

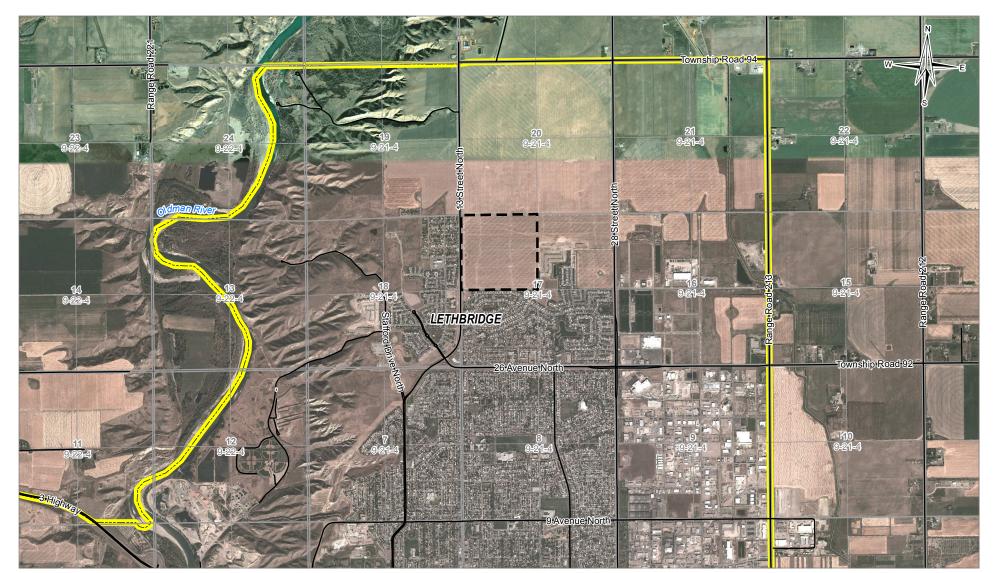
- Alberta Sustainable Resource Development. 2007. Provincial Wetland Restoration/Compensation Guide. Available at: http://environment.alberta.ca/01126.html (accessed November 20, 2013).
- Alberta Sustainable Resource Development. 2011. General Status Background & Categories. Available at: http://srd.alberta.ca/FishWildlife/SpeciesAtRisk/AlbertasSpeciesAtRiskStrategy/GeneralStatusOf AlbertaWildSpecies2010/GeneralStatusBackgroundCategories.aspx (accessed November 13, 2013).
- Alberta Environment and Sustainable Resource Development. 2012. Species Assessed by Alberta Endangered Species Conservation Committee: Short List. Available at: http://srd.alberta.ca/fishwildlife/speciesatrisk/documents/SpeciesAssessed-EndangeredSpeciesConservationCommittee-ShortList-Nov06-2012.pdf (accessed November 13, 2013).
- Alberta Environment and Sustainable Resource Development. 2013. Access FWMIS Data. Available at: http://srd.alberta.ca/FishWildlife/FWMIS/AccessFWMISData.aspx (accessed November 13, 2013).
- Alberta Tourism Parks and Recreation. 2013a. Search ACIMS Data. Available at: http://www.albertaparks.ca/albertaparksca/management-land-use/alberta-conservationinformation-management-system-(acims)/search-acims-data.aspx (accessed November 13, 2013).
- Alberta Tourism Parks and Recreation. 2013b. List of Tracked and Watched Elements June 2013. Available at: http://albertaparks.ca/albertaparksca/management-land-use/alberta-conservationinformation-management-system-(acims)/tracking-watch-lists.aspx (accessed November 13, 2013).
- Alberta Tourism Parks and Recreation. 2013c. Species Conservation Ranks. Available at: http://albertaparks.ca/albertaparksca/management-land-use/alberta-conservation-informationmanagement-system-(acims)/tracking-watch-lists/species-conservation-ranks.aspx (accessed November 13, 2013).
- EBA, A Tetra Tech Company. 2012. Phase I Environmental Site Assessment Lands North of Uplands 3625 & 4205 13 Street North and 2200 44 Avenue North Lethbridge, Alberta. L12101928.001. March 2012. Lethbridge, Alberta.
- Environment Canada. 2012. Canadian Wildlife Species at Risk. Available at: http://www.cosewic.gc.ca/eng/sct0/rpt/csar_e_2012.pdf [Accessed November 13, 2013].
- Stewart, R.E. and H.A. Kantrud. 1971. Classification of Natural Ponds and Lakes in the Glaciated Prairie Region. Bureau of Sport Fisheries and Wildlife, U.S. Fish and Wildlife Service, Washington, D.C., USA. Resource Publication 92. 57 pp.

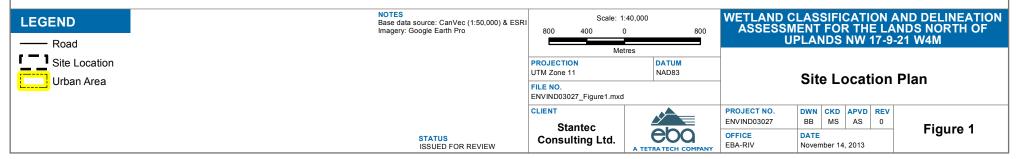
Statutes Cited

Federal

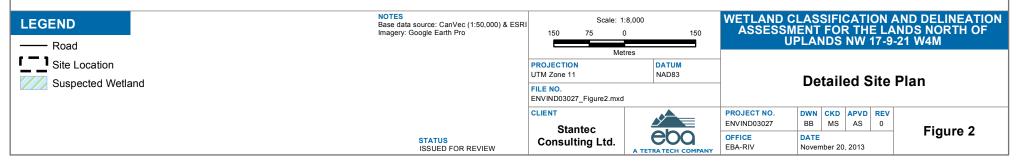
Species at Risk Act, S.C. 2002, c. 29

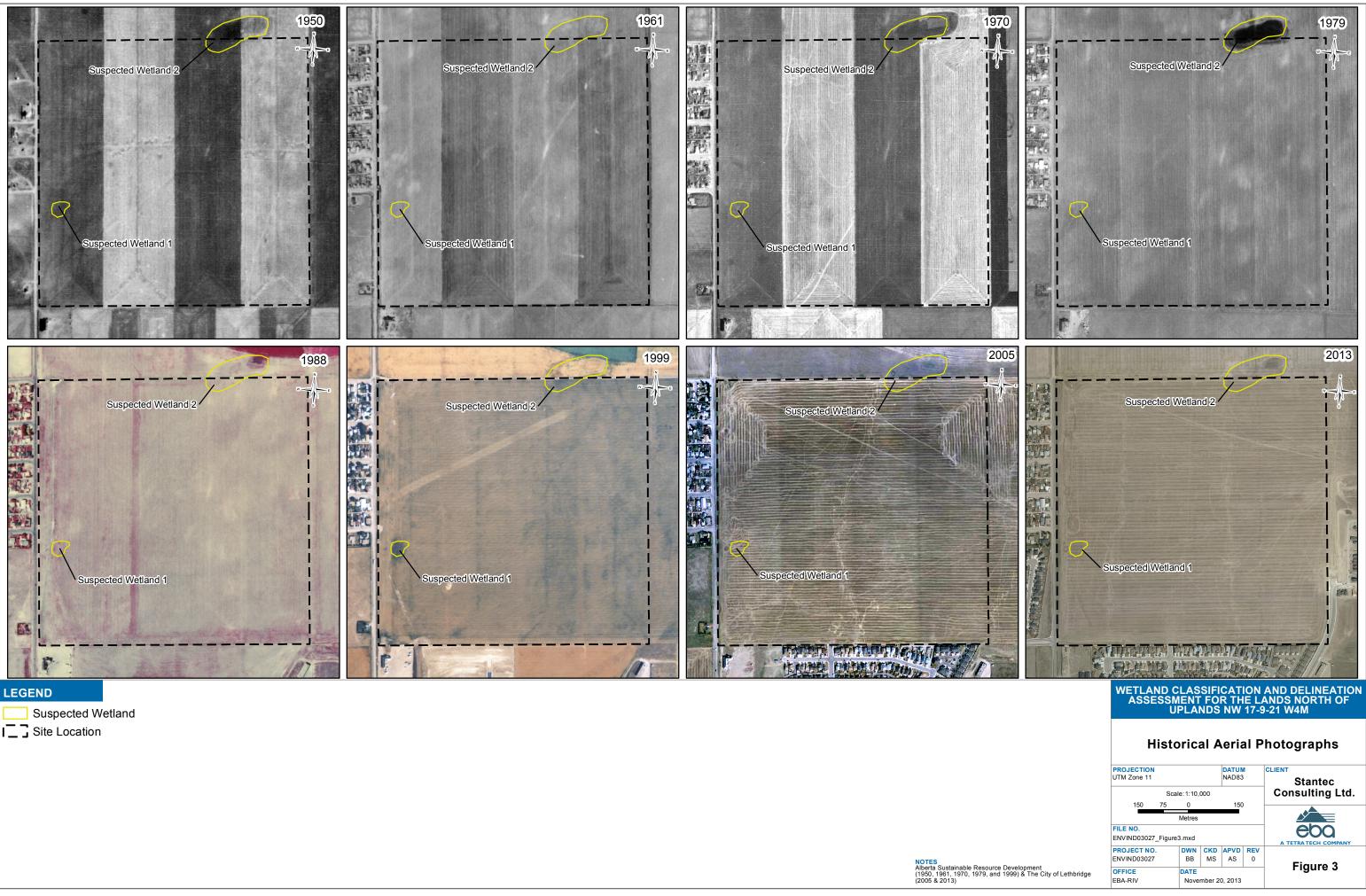
Provincial (Alberta)


Water Act, R.S.A. 2000, c. W-3


Wildlife Act, R.S.A. 2000, c. W-10

FIGURES


- Figure I Site Location Plan
- Figure 2 Detailed Site Plan
- Figure 3 Historical Aerial Photographs



PHOTOGRAPHS

- Photo I Suspected Wetland I view looking north
- Photo 2 Sanitary Sewer I found within Suspected Wetland I
- Photo 3 Sanitary Sewer 2 found within Suspected Wetland I
- Photo 4 Suspected Wetland 2, located on adjacent property to the north, not within Project Site view looking east
- Photo 5 Suspected Wetland 2, located on adjacent property to the north, not within Project Site view looking northeast

Photo 1: Suspected Wetland 1 - view looking north.

Photo 2: Sanitary Sewer 1 found within Suspected Wetland 1.

Photo 3: Sanitary Sewer 2 found within Suspected Wetland 1.

Photo 4: Suspected Wetland 2, located on adjacent property to the north, not within Project Site – view looking east.

Photo 5: Suspected Wetland 2, located on adjacent property to the north, not within Project Site – view looking northeast.

GENERAL CONDITIONS

GEO-ENVIRONMENTAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site or proposed development would necessitate a supplementary investigation and assessment.

This report and the assessments and recommendations contained in it are intended for the sole use of EBA's client. EBA does not accept any responsibility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than EBA's Client unless otherwise authorized in writing by EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except EBA. The Client warrants that EBA's instruments of professional service will be used only and exactly as submitted by EBA.

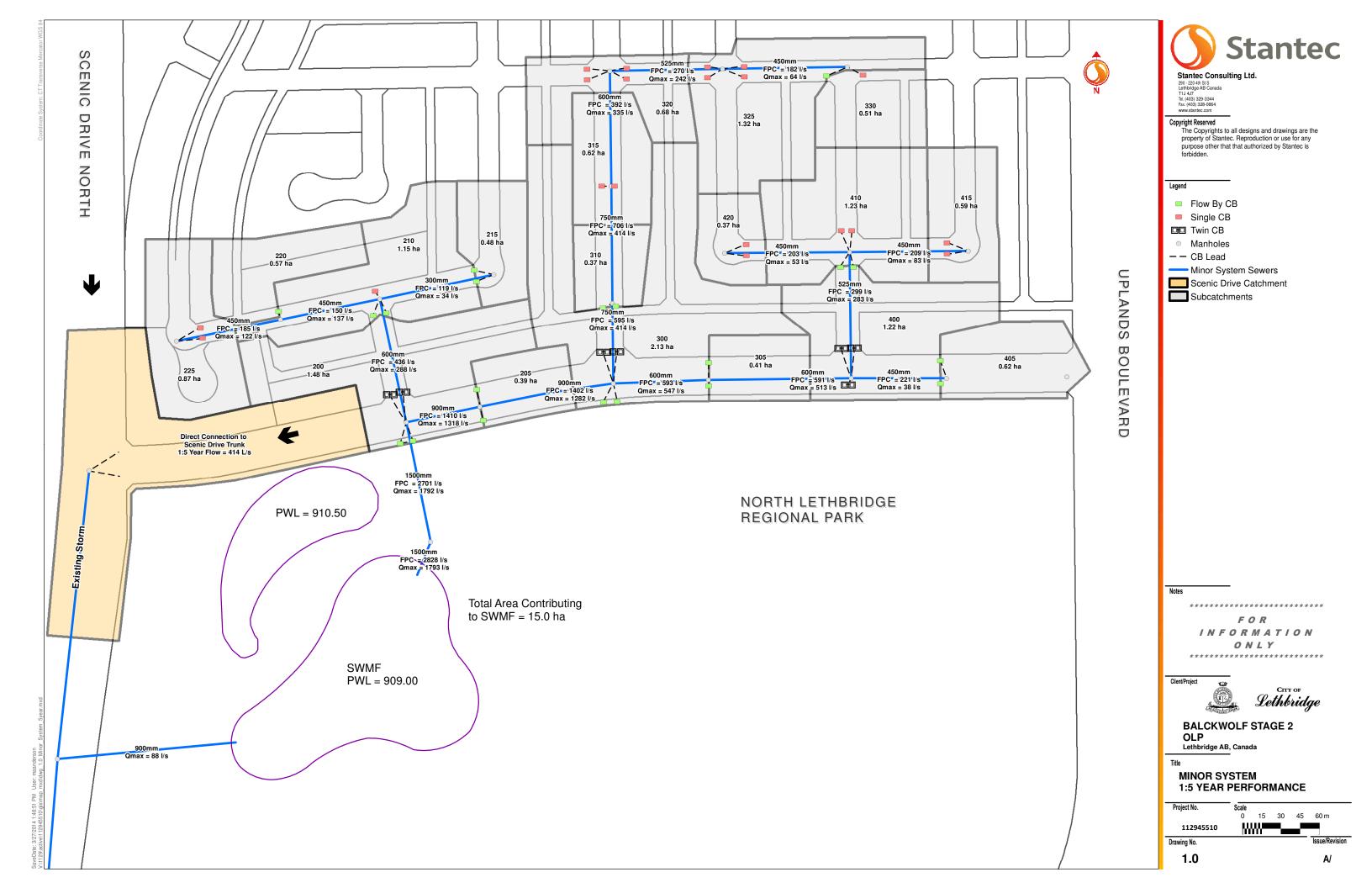
Electronic files submitted by EBA have been prepared and submitted using specific software and hardware systems. EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

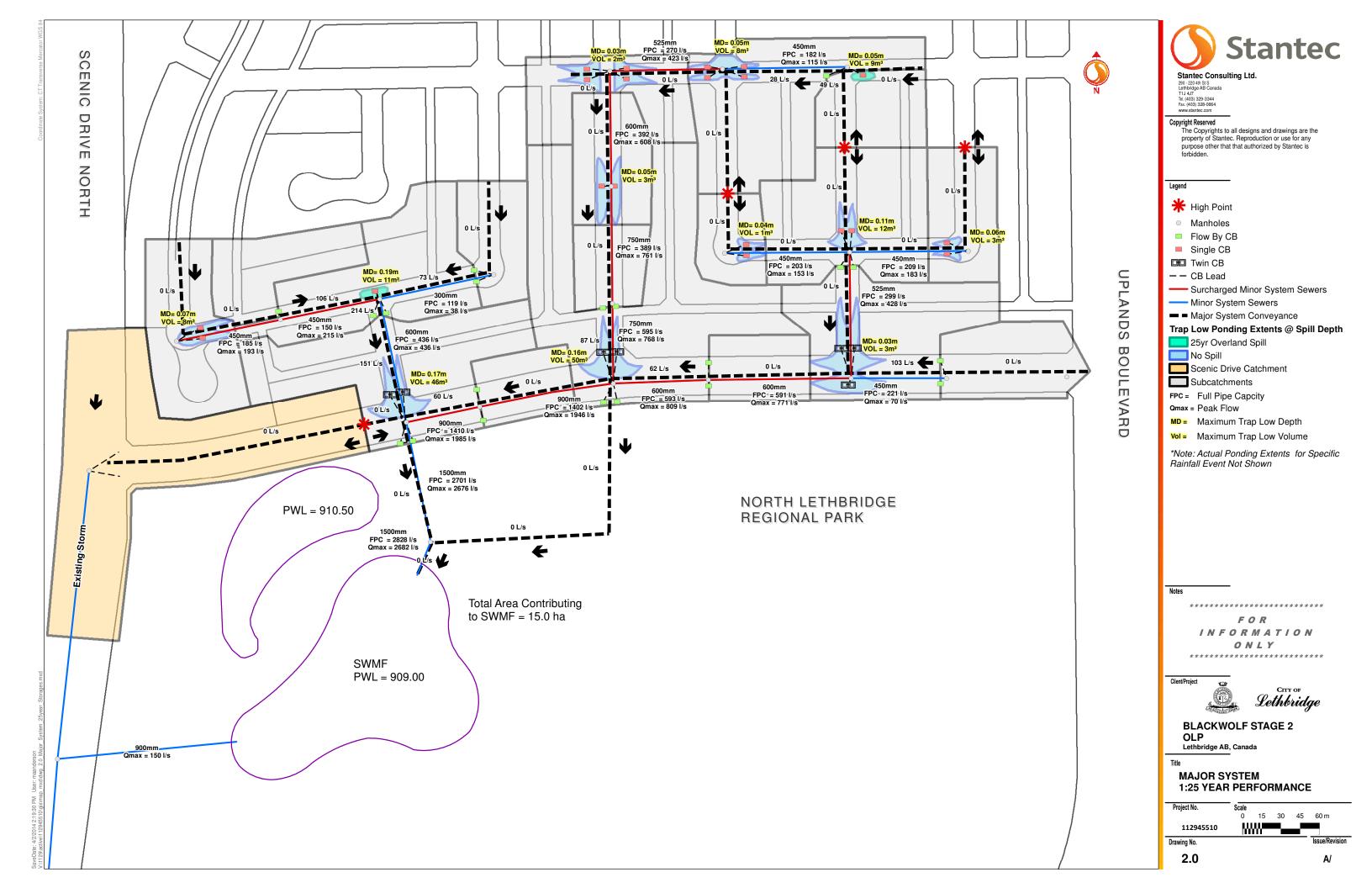
3.0 NOTIFICATION OF AUTHORITIES

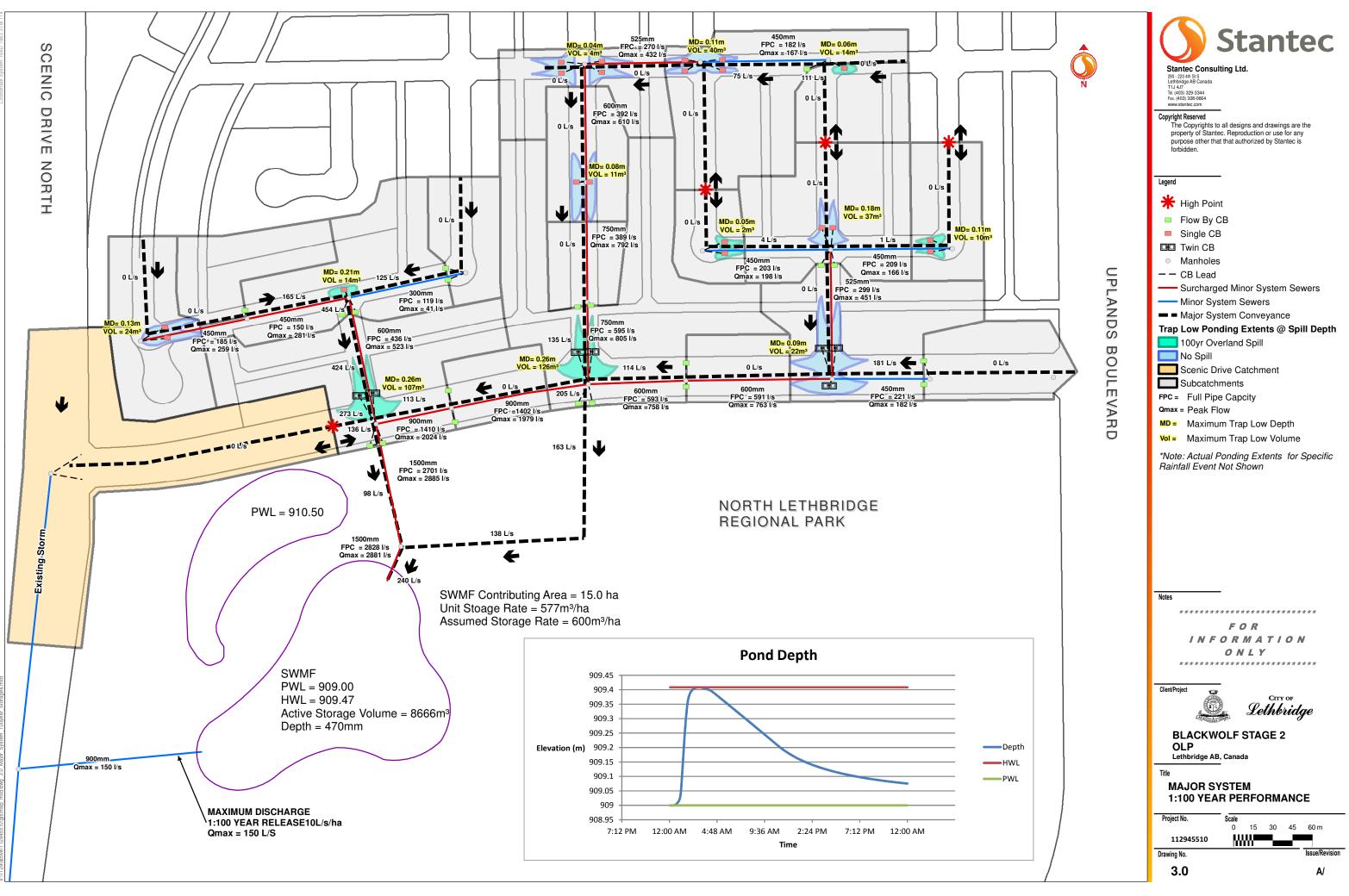
In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by EBA in its reasonably exercised discretion.

4.0 INFORMATION PROVIDED TO EBA BY OTHERS

During the performance of the work and the preparation of the report, EBA may rely on information provided by persons other than the Client. While EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.






APPENDIX G

BlackWolf Boulevard Storm Water Management Preliminary Design

SaveDate: 4/25/2014 10:26:53 AM User: maanderson

APPENDIX H

High Intensity Fire Response Analysis City of Lethbridge

OFFICE OF PLANNING & DEVELOPMENT SERVICES DEPARTMENT PLANNING SECTION Telephone No. 320-3920

June 6, 2014

RE: Fire Response Times – Blackwolf Stage 2 Outline Plan

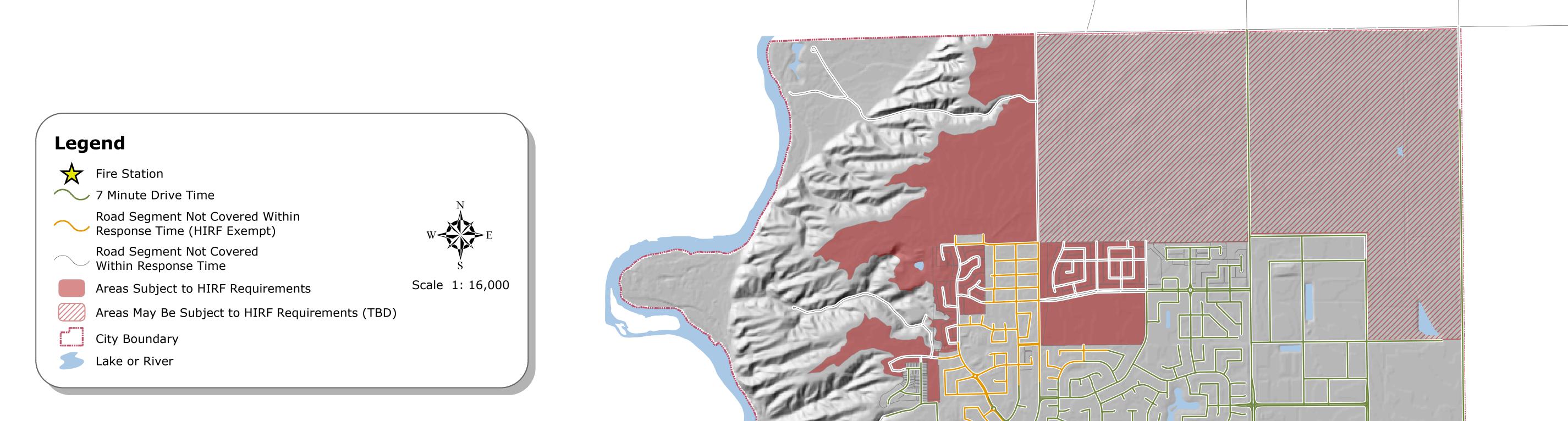
The above referenced Outline Plan was evaluated to determine the extent to which it is located within the fire department's ten minute response area. This evaluation only considers what areas will or will not be within the fire department's ten minute response area at its ultimate "build-out".

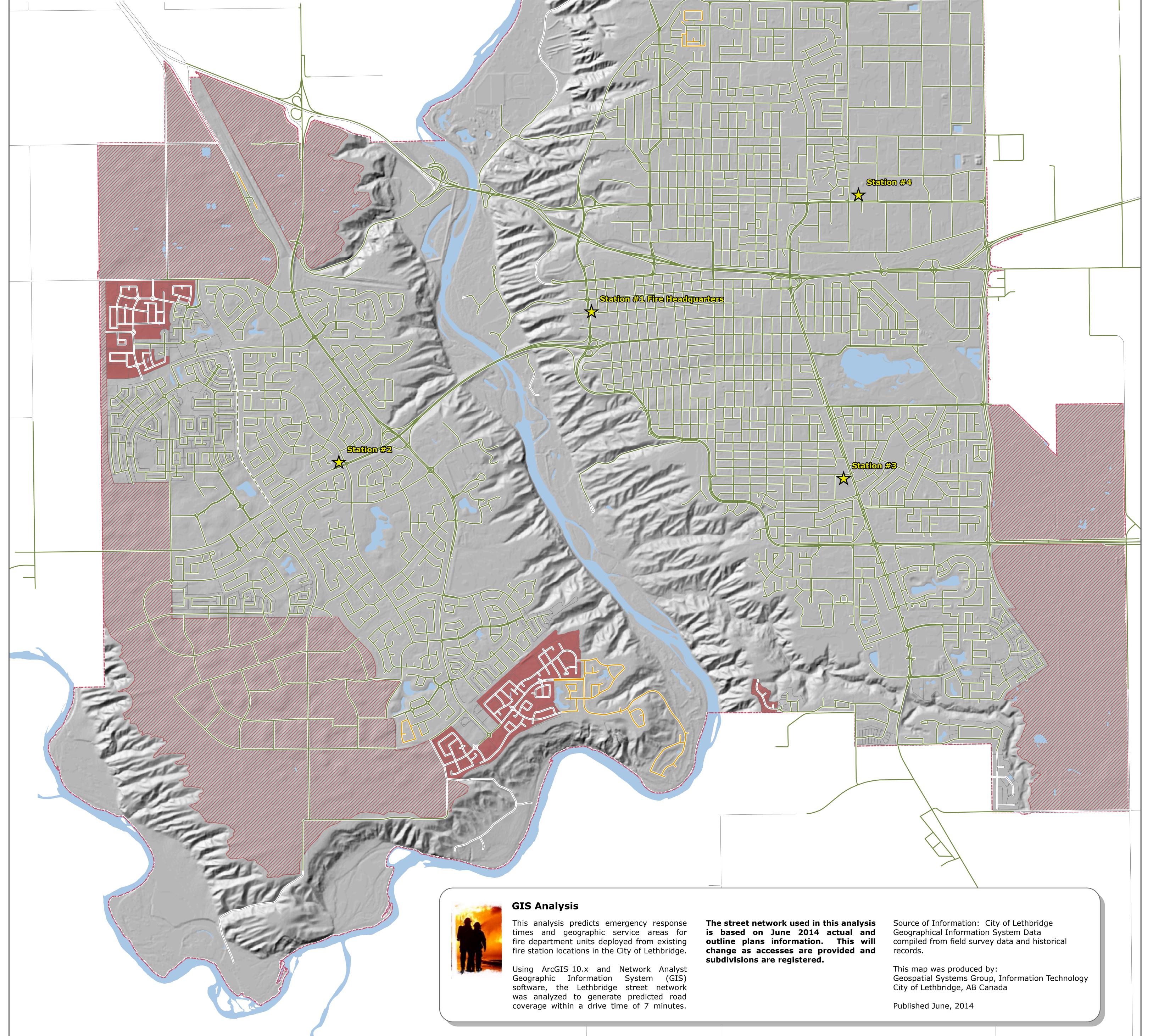
Fire response times can increase or decrease depending on the phasing of new subdivisions and the actual construction of new road segments into an area. As such, subdivision applications submitted to the Subdivision Authority will also be assessed to verify whether the proposed lots are within the fire department's ten minute response area.

Areas that do not fall within the fire department's ten minute response area must address the level of fire protection that is required on exterior walls and the distance between adjacent structures, as outlined by the Alberta Building Code Sub-Sections 9.10.14 & 9.10.15.

Yours Truly,

Senior Subdivision Planner City of Lethbridge


cc. Chief, Fire and EMS Chief, Fire Marshall Building Safety & Inspection Services Manager



ALBERTA BUILDING CODE INTERPRETATION HIGH INTENSITY RESIDENTIAL FIRE ANALYSIS

~ PLANNING & DEVELOPMENT DEPARTMENT ~

JUNE 2014

©2014, City of Lethbridge, AB Canada

APPENDIX I Gate 1 Sign-Off

City of Lethbridge Outline Plan – Gated Review Process Sign-Off Template

GATE 1 – Information Gate

Stantec Consulting Ltd. Project: Lands North of Uplands Outline Plan

Submittal Date: January 31, 2012 File: 112945510

1. Project Team

- Developers: City of Lethbridge Real Estate & Land Development Michael Kelly, (403) 320-3194, <u>michael.kelly@lethbridge.ca</u>
 Consultants: Stantec Consulting Ltd. Chris Martino, (403) 329-3344, <u>chris.martino@stantec.com</u> Devin Huber, (403) 329-3344, <u>devin.huber@stantec.com</u> Development Review Committee (DRC)
 - (Contact: Barry Peat (403) 320-3927, <u>barry.peat@lethbridge.ca</u>)

2. Confirmation of Gated Process Template

 Gated Plan/Master Servicing Plans Gated Process Template, September 25, 2008 (copy attached).

3. Authority/Permission to Proceed with Planning

 Permission to proceed with planning granted August 4, 2011, Planning & Development Services Dept.

4. Area to be Planned

- Project Limits provided on Figure 1.0 Area Context Plan as per Hardieville/Legacy Ridge/Uplands Area Structure Plan
- Project Legal Description: NW¼-17-9-21-W4M

5. Potential Connection Points

- Preliminary Transportation Network Figure 2.5 Opportunities & Constraints
- Connection Points Sanitary Figure 2.5 Opportunities & Constraints
- Connection Points Water Figure 2.5 Opportunities & Constraints
- Connection Points Stormwater Figure 2.5 Opportunities & Constraints

6. Existing Reference Plans

- Hardieville/Legacy Ridge/Uplands Area Structure Plan
- Adjacent Outline Plan: Uplands
- Adjacent Outline Plan: Legacy Ridge Stage I
- Adjacent Outline Plan: Legacy Ridge Stage II
- Adjacent Outline Plan: Legacy Ridge Stage III
- Adjacent Outline Plan: BlackWolf
- North Lethbridge Regional Park Needs Assessment, Public Engagement Study and Site Recommendation
 MDP / ICSP

7. Constraints/Opportunities

- Gas Service high pressure line located on east side of 13th St.
- Stormwater Need to provide drainage alignment north around Hardieville to Legacy Ridge/Hardieville storm pond (see Figure 2.5)
- School site (Holy Spirit) possible switch to K-6 size, location to be comfirmed and may relocate to North
- Drainage coming from BlackWolf site on East needs to be addressed
- Sanitary Trunk Requirement for BlackWolf Stage 2 at South Boundary in PUL
- ROW re-alignment of 13th Street
- City of Lethbridge Public Consultation process for the Hardieville 13th Street access/ closure

8. Supporting Studies Required

- Traffic Impact Assessment (TIA) including a consideration for the effects of the proposed North . Uplands road connections on existing adjacent intersections.
- Geotechnical Investigation
- Environmental Site Assessment (ESA) .
- Historical Resource Impact Assessment (HRIA) .

9. Agreed Change Process

- Change to a previous gate decision must be requested .
- Request must document all impacts of the change .
- City to review request and determine if it is deemed either inconsequential or require more . supporting analysis and the impact to subsequent gate approvals

10. Schedule/Timelines

- Gate #1 Information Gate .
- Gate #2 Preliminary Land Use Gate
- Gate #3 Initial Concept Gate .
- Gate #4 Draft Plan Gate
- Gate #5 Final Document Gate
- MPC/Council Submission

ethbridge

Gate 1 Sign-Off

Gate 1 Sign-Off

ethbridge (RELD)

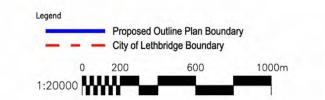
January 31, 2012 April 30, 2012 July 30, 2012 September 30, 2012 October 30, 2012 November 30, 2012

Kell 31,2012

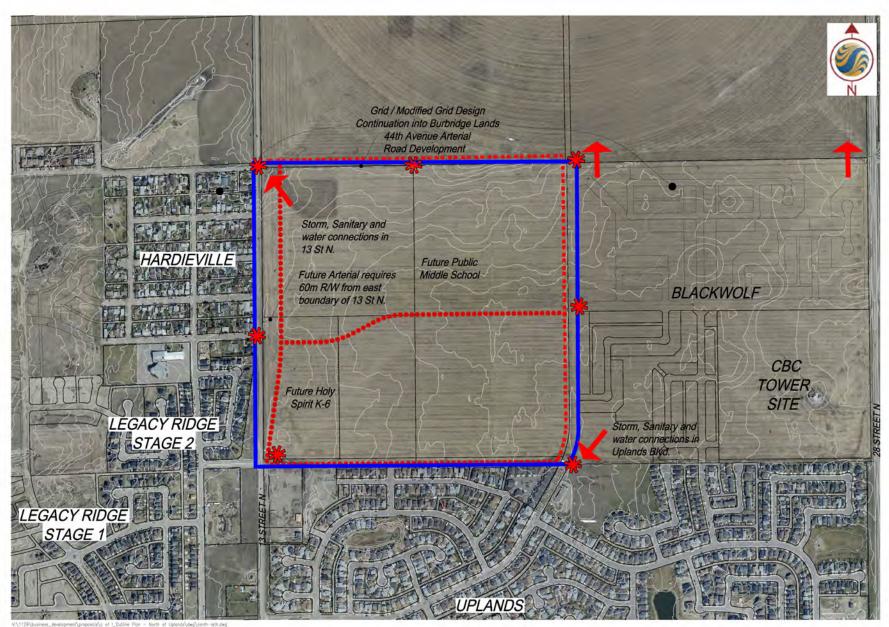

Barry Peat

Print Name

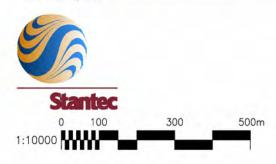
Date


Date

February 2, 2012



V-\1129\business_development\propasals\c at LOutline Plan - North of Uplands\deg\north-leth.deg 2011-12-15 02:08PW By: amongmana



Client/Project 112945510 City of Lethbridge - RELD Lands North of Uplands Outline Plan Figure No. 1.0 Title Area Context Plan

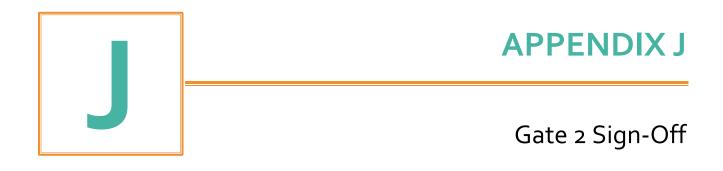
2011-08-08 03:02PM By: cmartino

Notes:

~ Historical & Interpretive Themes Could Assist in the 3 School Sites & Regional Park

Legend

Proposed Outline Plan Boundary Pedestrian & Bikeway Routes


Local Pathway Excellent Access Points for Pedestrian & **Traffic Circulation**

Natural Drainage

112945510 Client/Project City of Lethbridge - RELD Lands North of Uplands **Outline Plan** Figure No. 2.5 Title

Opportunities & Constraints

Stantec Consulting Ltd. Project: BlackWolf Stage 2 OLP Stantec Submittal Date: October, 2012

GATE 2 – Preliminary Land Use

File: 112945510

1. Confirmation of Previous Gate

• Gate 1 completed and signed off on February 2, 2012

2. Public Consultation

• The public consultation component will be a one night Open House held after formal approval of Gate 3

3. Developer's Vision

• The vision of BlackWolf Stage 2 will confirm continuity of the vision established in the BlackWolf Stage 1 Outline Plan as well as endeavor to complement the North Regional Park and surrounding community.

4. Concept Land Use

- Figure 2.0 Land Use Concept
- Figure 3.0 Site Constraints
- 5. Conceptual Open Space Layout
 - Figure 2.0 Land Use Concept

6. Conceptual Road Network

- Figure 2.0 Land Use Concept
- 7. Conceptual Zoning District
 - Figure 2.0 Land Use Concept

8. Conformance to Governing Documents

- Area Structure Plan: Hardieville/ Legacy Ridge/Uplands Area Structure Plan
- Adjacent Outline Plans: Uplands, Legacy Ridge Stage I, Legacy Ridge Stage II, Legacy Ridge Stage III, and BlackWolf

9. Infrastructure Design Basis Memorandum

• As proposed in Gate 1, the Infrastructure Design Basis Memorandum will set the framework for future analysis

auren Gaehring NOV 16/12 Gate 2 Sign-Off lecter of Nov16/12 City of Lethbridge see acconizar 19, 2012 Gate 2 Sign-Off Real Estate and Land Development Print Name Date

October 25, 2012 File: 112945510

City of Lethbridge Development Services 910 – 4th Avenue South, Lethbridge, Alberta T1J 0P6

Attention: Maureen Gaehring, Community Planning Manager

Dear Ms. Gaehring:

RE: Lands North of Uplands Outline Plan – Gate 2 Submission – Revision 2

Further to DRC's comments as outlined in your letter of September 14, 2012, (attached) please see our submission below that we have prepared for your consideration.

Transportation

• Marmot Road N exists in the Uplands subdivision and dead ends at the south boundary of the regional park. This roadway should be identified in the outline plan as being closed; converting it to a walkway *Revised on Figure 3.0 as requested.*

Underground Utilities

- Please see attached LNOU topo map showing overland storm catchment boundaries. Figure 5 should more closely resemble these boundaries. *Revised as requested.*
- Section titled Design Assumptions; last sentence in last paragraph, please change 800m³/ha to 1000m³/ha and remove the rest of the sentence after the comma. *Revised as requested.*
- Drainage from perimeter roadways must be accounted for in this plan. Agreed, and this was included on page 1 of the Design Memo.

Planning

- The swing site is too large and there is not sufficient explanation even at this level to identify potential uses. *The swing site has been removed.*
- Please clarify the use of the swing site in light of recent events with both school authorities in regards to school sitting on the north side. *The swing site was originally to provide a 6.50ha parcel for a school site. As per the recent events with both school boards the use has been adjusted to single family as seen on the revised Figure 2.0.*
- Please review the Gate one comment for Figure 1 and revise this figure. *Figure 1.0 has been revised to reflect recent events with both school authorities as requested.*

October 25, 2012 Maureen Gaehring, Community Planning Manager Page 2 of 2

RE: Lands North of Uplands - Outline Plan – Gate 2 Submission – Revision 2

• The plan needs a suitable name, has the developer anything in mind? The Lands North of Uplands will be titled "BlackWolf Stage 2". This is consistent with the area context and the adjacent developments.

<u>Parks</u>

- Figure 2; to improve connectivity with the regional park, the north wet pond should be aligned in a north south configuration adjacent to the future Scenic Dr. *The Current land use layout demonstrates excellent pedestrian connectivity from all directions, West, North and East. The connectivity will be evident in Gate 3.* To optimize lot layout efficiency and existing topography we need to leave the wet pond aligned with the future 44th Avenue Arterial Road. Future Scenic Drive will be developed to a City Standard and it will provide great pedestrian connectivity.
- Figure 2; please remove the pathways from the regional park to avoid confusion with the park designs' walkway layout. *Figure 2.0 has been revised as requested.*

Trusting that we have met your requirements for Gate 2, included with our submission is a request for Gate 2 Sign-Off. Should you have any questions or concerns, please do not hesitate to call.

Sincerely, **STANTEC CONSULTING LTD.**

Devin Huber, CSLA, ASLA Planning & Landscape Architecture Team Lead Tel: (403) 329-3344 Fax: (403) 328-0664 devin.huber@stantec.com

- Attachment: DRC Correspondence of September 14, 2012 Lands North of Uplands Design Memo Gate 2 Sign-off document
- c. Mr. Michael Kelly, City of Lethbridge RELD Mr. Brad Schmidtke, Stantec Consulting Ltd.

Office of: Planning & Development Services Department Planning Section Phone No. 320-3920

September 14, 2012

Stantec Consulting Ltd. Lethbridge, AB

Attention: Devin

Dear Sir:

RE: Uplands North Outline Plan - Gate 2 Review Comments

The DRC reviewed your Gate 2 submission and has the following comments:

Transportation

• Marmot Road N exists in the Uplands subdivision and dead ends at the south boundary of the regional park. This roadway should be identified in the outline plan as being closed; converting it to a walkway.

Underground Utilities

- Please see attached LNOU topo map showing overland storm catchment boundaries. Figure 5 should more closely resemble these boundaries.
- Section titled Design Assumptions; last sentence in last paragraph, please change 800m³/ha to 1000m³/ha and remove the rest of the sentence after the comma.
- Drainage from perimeter roadways must be accounted for in this plan.

Planning

- The swing site is too large and there is not sufficient explanation even at this level to identify potential uses.
- Please clarify the use of the swing site in light of recent events with both school authorities in regards to school sitting on the north side.

- Please review the Gate one comment for Figure 1 and revise this figure.
- The plan are needs a suitable name, has the developer anything in mind?

Parks

- Figure 2; to improve connectivity with the regional park, the north wet pond should be aligned in a north south configuration adjacent to the future Scenic Dr.
- Figure 2; please remove the pathways from the regional park to avoid confusion with the park designs' walkway layout.

Please amend the Gate 2 submission as noted and resubmit to DRC for review.

Yours truly,

Barry Peat Development Review Committee City of Lethbridge

Stantec DESIGN BASIS MEMORANDUM

BlackWolf Stage 2 - Outline Plan

Gate 2 Submission File: 112945510 October, 2012

INTRODUCTION

The BlackWolf Stage 2 Outline Plan development boundary is located in North Lethbridge, north of the existing community of Uplands, west of the BlackWolf Stage 1 community, east of future Scenic Drive North and south of future 44th Avenue North. Refer to *Figure 1.0 Area Context Plan*. The site is comprised of approximately 57.34 ha (141.7 acres) excluding arterial road right of ways.

The purpose of our Design Basis Memorandum is to:

- Identify key site constraints and opportunities
- Identify Stantec's design assumptions that will be used as a basis for more detailed analysis

It is anticipated that this will allow us to make any necessary corrections in a more efficient manner prior to the development of more detailed documents in Gates 3 and 4.

SITE TOPOGRAPHY AND GRADING

The BlackWolf Stage 2 Outline Plan site drains from a plateau area (El. 916.50 – 917.00) to the north, north-west and west. Existing drainage flows to natural low areas as indicated on *Figure 2.0 Land Use Concept*. The maximum elevation difference on the site is approximately 6.5 metres. Refer to *Figure 3.0 Site Constraints*. Special consideration with regard to existing drainage will need to be considered along the existing 13 Street right of way, BlackWolf Stage 1 and Uplands development boundary.

Site grading designs will attempt to match existing terrain as much as possible in order to reduce excessive earthwork quantities and maintain grades/drainage around existing properties, roadways and infrastructure.

TRANSPORTATION

BACKGROUND INFORMATION

Access points have been defined by Uplands, BlackWolf Stage 1 and the Hardieville Accesses Management Study and further refined as indicated on *Figure 3.0 Site Constraints*. Access points will meet City of Lethbridge requirements with regard to intersection spacing for arterial roads.

DESIGN ASSUMPTIONS

Drainage will be accommodated by internal storm water management facilities up to the centerline of the adjacent arterial road; drainage will be considered from beyond the centerline.

A meeting will be scheduled with Transportation to discuss preliminary road grading plans for 13th Street, 44th Avenue and Upland Boulevard adjacent to BlackWolf Stage 1 during Gate 3.

Land Use	Peak Period	Total Trip Ends (trips/du)	Inbound (trips/du)	Outbound (trips/du)
Low Density Residential (xxx units)	AM (PM)	0.77 (1.02)	0.20 (0.65)	0.57 (0.37)
Medium Density Residential (xxx units)	AM (PM)	0.75 (0.92)	0.22 (0.56)	0.53 (0.36)
Elementary school site (ITE code 522, per student)	AM (PM)	0.42 (0.28)	0.23 (0.13)	0.19 (0.15)

WATER DISTRIBUTION SYSTEM

BACKGROUND

The servicing of BlackWolf Stage 2 from the perspective of treated water, will be supported by connections to existing waterlines along 13th Street, along the north boundary of Uplands and an existing Uplands Boulevard water stub.

DESIGN ASSUMPTIONS

The servicing of BlackWolf Stage 2 from the perspective of treated water, will be supported by connections to existing waterlines along 13th Street, along the north boundary of Uplands and an existing Uplands Boulevard water stub.

The following acceptable delivery pressures are stated in the City of Lethbridge Design Standards, Level of Service Objectives:

- No less than 310 kPa (45 psi) during Peak Hour Demand
- No less than 345 kPa (50 psi) at Maximum Day Demand
- Maximum Delivery Pressure will not exceed 620 kPa (90 psi)
- Average Day Demand (ADD) = 415L/Cap/day
- Maximum Day Demand (MDD) = 2.2 x ADD
- Peak Hour Demand (PHD) = 3.5 x ADD

The development will be flanked on all sides by major distribution lines along arterial right of ways. Internal distribution networks will be grid style systems that allow for water looping during development phasing.

SANITARY COLLECTION SYSTEM

BACKGROUND

Currently, the BlackWolf Stage 2 Outline Plan Area has two possible sanitary sewer connection points.

The first is located at the termination of Uplands Boulevard North in the SW corner of Blackwolf Stage 1. This 675mm diameter storm sewer is installed at a depth of approximately 7-8m and currently services Blackwolf Stage 1 and Uplands. Flows from the Sherring Industrial Park area are currently bypassing the Uplands Blvd gravity trunk via a forcemain along the north boundary of Uplands to 13th Street. However, it is anticipated that future contributions from Sherring might utilize this sewer connection. Further discussion with City of Lethbridge Infrastructure during Gate 3 will be required to determine if a portion of the BlackWolf Stage 2 can drain its sewage to the Uplands Boulevard location. Specifically, the residential areas proposed along Uplands Boulevard and the SE quadrant of our OLP Area.

The second connection point for the BlackWolf Stage 2 has been identified on 13th Street and 40th Avenue. This 750mm sanitary sewer is installed at a depth of approximately 9-10m. This sewer currently receives sewage from the Sherring Industrial Park forcemain. The City of

Lethbridge has indicated that this sewer has the capacity to receive sewage from approximately 429Ha of undeveloped land which is well above the residential area within our OLP boundary. Given the depth of the installation of the sewer, servicing of the LNOU area can be completed with a gravity sewer from 13th Street. However, depending on planned development staging, the most practical servicing of the SE quadrant of the development would be from Uplands Boulevard. *Figure 4.0 Sanitary Sewer Connections/Sewer Shed* indicates future connection points and possible sewersheds.

We look forward to finalizing a servicing strategy for BlackWolf Stage 2 during Gate 3 development.

DESIGN ASSUMPTIONS

City of Lethbridge Design Standards for residential flows will be used for analysis.

Dry Weather Flow:	500L/cap/day
Wet Weather Flow:	400L/cap/day
Infiltration:	150L/cap/day
Harmon's Peaking Factor:	[14/ (4+ P)] +1

POPULATION ASSUMPTIONS

Gate 3 Land Use Planning and population statistics will provide details of population densities per land use area. For the purpose of determining sanitary sewage generation, we will assume the total population of the development divided by a Gross Development Area excluding arterial roads to arrive at a density of people/ha. We have reviewed the analysis of the 6.5ha school site based on City of Lethbridge Standards. We anticipate that analyzing the school site based on our assumed population density will yield a similar or slightly higher sewage generation rate than if the site were analyzed as a school site. Therefore, for simplicity, the school site will be attributed a population weighting based on our defined density.

STORM WATER MANAGEMENT

BACKGROUND

Where practical, catchment boundaries will be defined by natural topography in an effort to minimize excessive earthwork; these boundaries will extend to the centerline of the adjacent arterial roadways thereby allowing for the combined control of runoff from the development and arterial roads.

Currently, the BlackWolf Stage 2 Outline Plan Area has two possible storm sewer connection points.

The first is located at the termination of Uplands Boulevard North in the SW corner of Blackwolf Stage 1. This 1500mm diameter sewer has been designed based upon a 1.6L/s/ha release rate. City Infrastructure is currently reviewing the ultimate catchment to this sewer based on previous master servicing plans. The second connection point for the Lands North of Uplands has been identified on 13th Street and 40th Avenue. The residual capacity of this line will need to be determined by City of Lethbridge Infrastructure. Based on the depth of 1200mm diameter storm line, Stantec anticipates that the balance of the BlackWolf Stage 2 can be serviced from this location. Stantec proposes to discuss and finalize with City Infrastructure the North Uplands drainage boundaries and their respective connection points during Gate 3. *Figure 5.0 Storm Water Management and Connections* outlines preliminary catchment boundaries and proposed connection points.

DESIGN ASSUMPTIONS

As specified in the City of Lethbridge 2011 Design Standards, storm water ponds must be designed to fully accommodate runoff from the 1:100 year, 24 hour rain event.

With regard to pond discharge, it is anticipated that the regional park wet pond will discharge flow to the Uplands Boulevard storm sewer, and the northwest wet pond will discharge flow to the 13th Street storm sewer. All ponds will be serviced by a minor storm sewer system sized for the 1:5 year rainfall event.

Overland flow routes are to be designed to convey the 1:100 year storm event and not exceed Alberta Environment guidelines for safe velocities and depths. Overland flow routes will incorporate trapped lows at strategic locations. Trapped low areas will:

- Increase surface run-off capture
- Provide for energy dissipation during extreme rain fall events ("stilling" basins)
- Allow for the practical creation of overland flow routes given localized topographical constraints
- Meet City of Lethbridge design guidelines for maximum depth of 300mm.

In addition to the above, overland flow within a drainage boundary will be proportioned in a way that evenly distributes the flow routes throughout the drainage boundary. Special attention at the detailed design stage may be required where two intersecting overland flow routes meet. Where possible, this point of intersection will occur in close proximity to a storm water management facility.

Emergency Overland Flow Routes beyond the 1:100 year event could be implemented at the northwest corner of the development. For planning purposes, ponds will be designed to accommodate 1000m³/ha.

SHALLOW UTILITIES

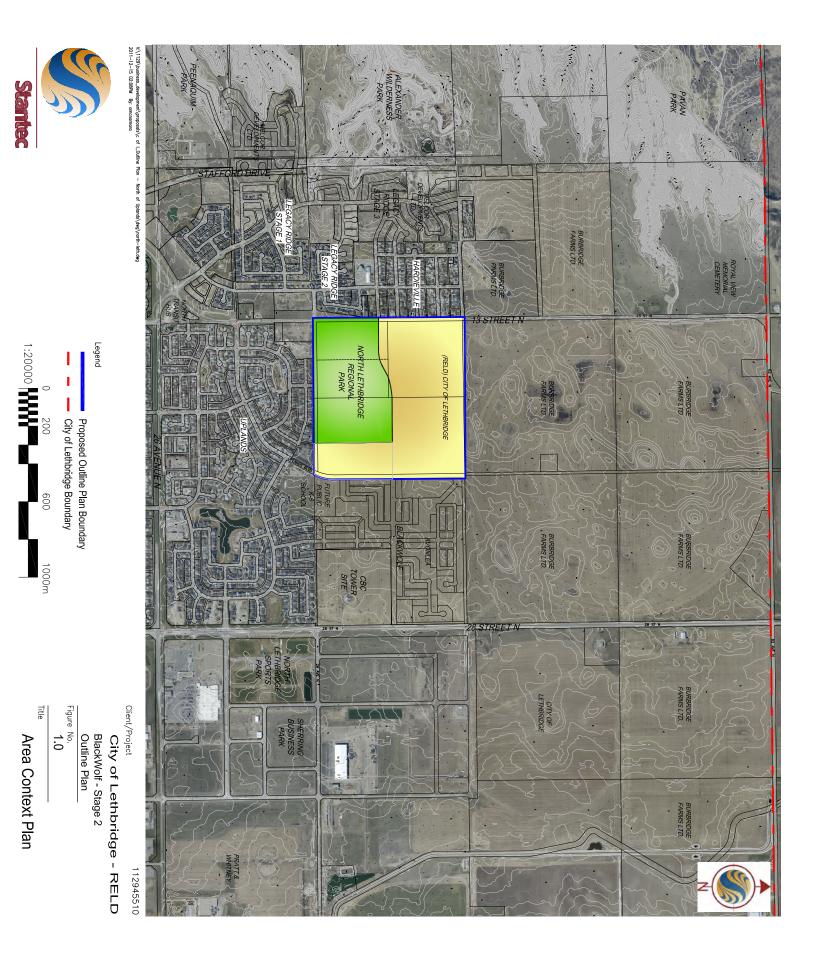
ATCO PIPELINES

An existing ATCO high pressure gas line is currently installed along the east side of the 13th Street R/W. Based on the ultimate development of 13th Street to a 75m R/W, these existing facilities will be located just west of the new R/W centerline. Two options that are available to the ultimate development of this R/W are the accommodation of ATCO Pipelines Infrastructure, or the relocation of the infrastructure. During Gate 3, Stantec proposes to open up a dialogue with City Transportation and Planning to discuss the preferred development strategy around this infrastructure.

ATCO GAS

It is anticipated that the existing ATCO gas facilities will be relocated and integrated into the community at the subdivision detailed design stage.

TELUS


It is anticipated that the existing Telus facilities will be relocated and integrated into the community at the subdivision detailed design stage. Telus has indicated that they may require a line assignment along the north boundary of Uplands.

SHAW

Shaw has indicated that they may require a line assignment along the north boundary of Uplands.

FORTIS

It is anticipated that the existing Fortis facilities will be relocated and integrated into the community at the subdivision detailed design stage by the City of Lethbridge and their Electrical Department.

BLACKWOLF STAGE 2 - LAND USE LAYOUT

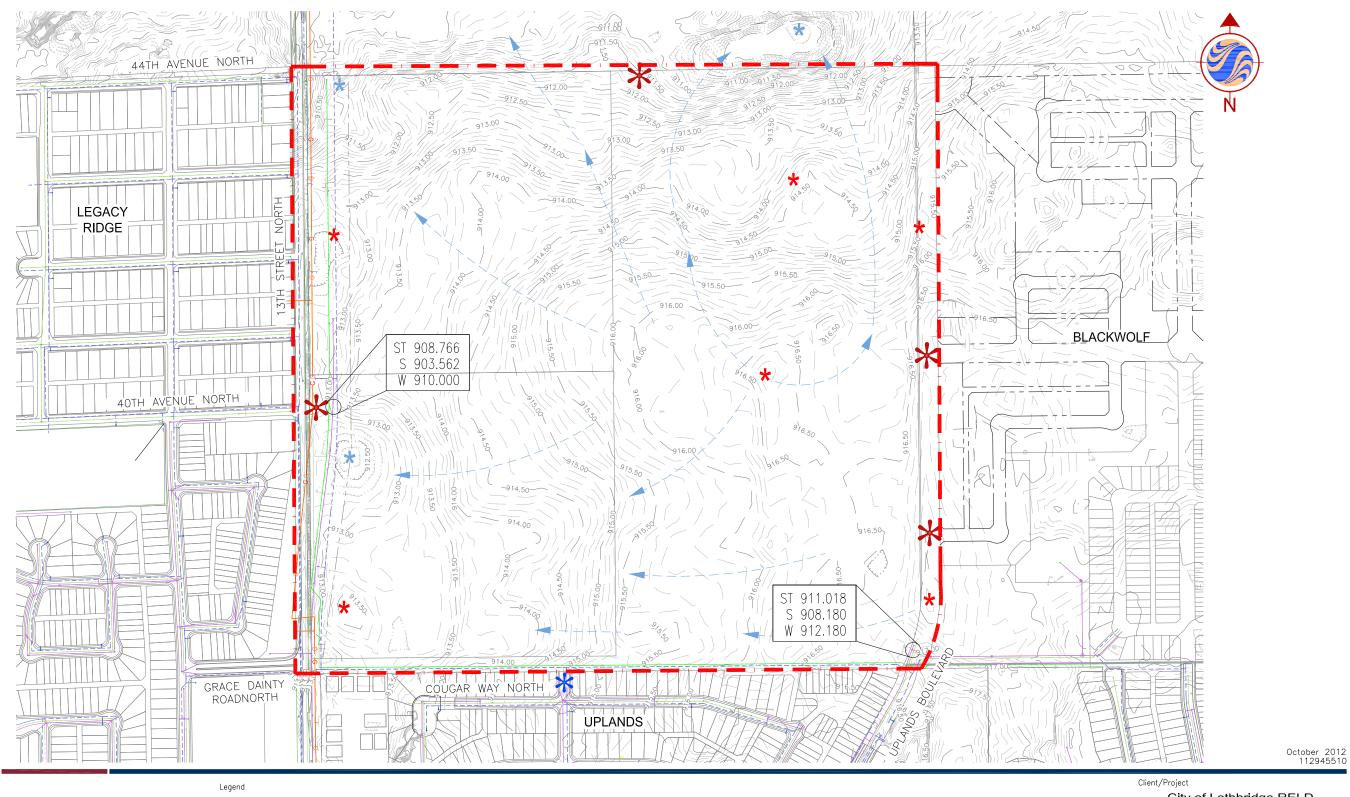
FIGURE 2.0 - SCALE NTS OCTOBER 2012

LEGEND:

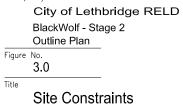
- MAJOR VEHICULAR CIRCULATION
- TREE LINED BOULEVARD & MEDIAN PARKWAY
- E FUTURE REGIONAL PATHWAY
- RESIDENTIAL VEHICULAR CIRCULATION

LOCAL CONNECTOR PATHWAY

00000000

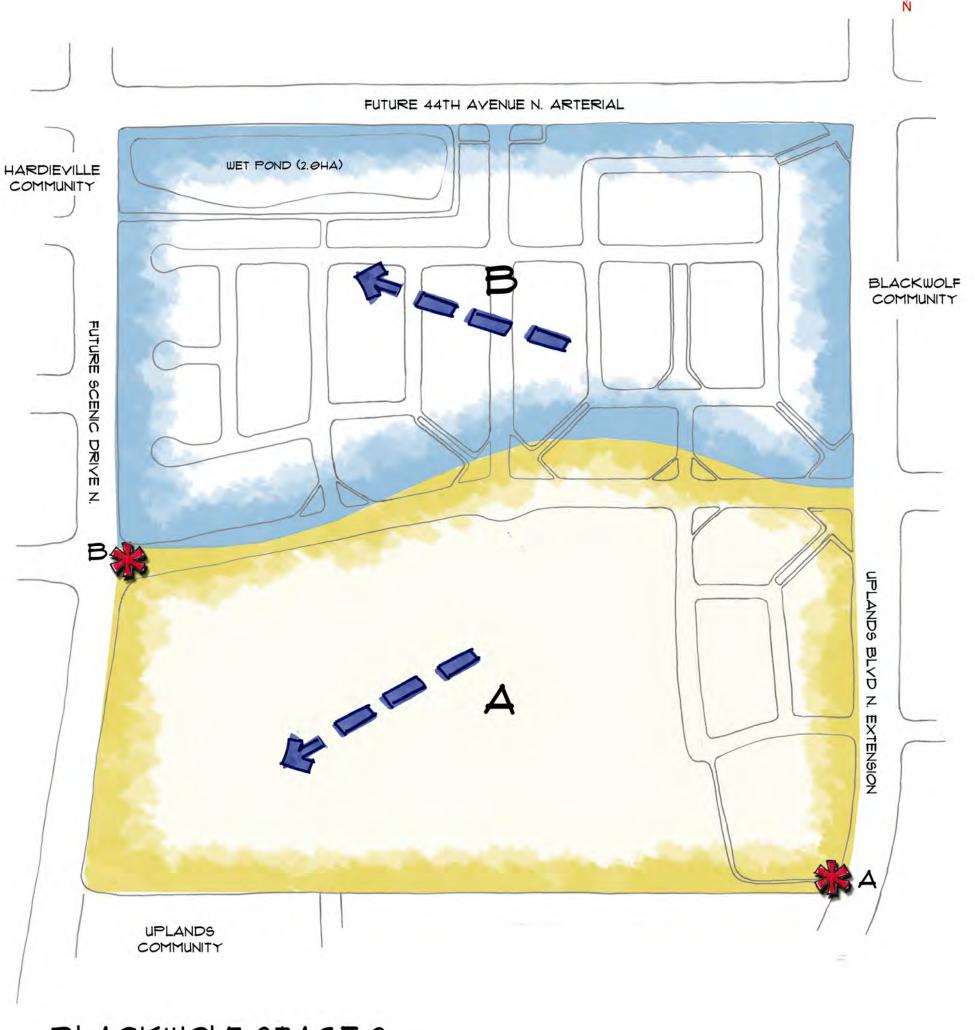

PEDESTRIAN CONNECTIONS


CENTRAL WAY FINDING ROUNDABOUT


GATEWAY TO COMMUNITY

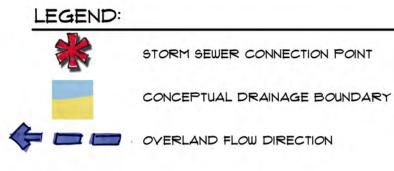
GATEWAY TO REGIONAL PARK

PRELIMINARY FOR DISCUSSION ONL

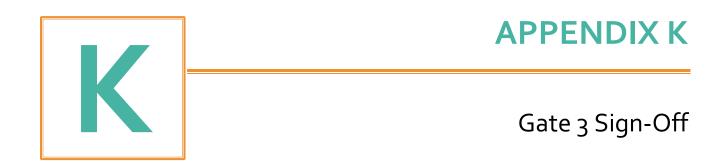


BLACKWOLF STAGE 2 -SANITARY SEWER CONNECTIONS / SEWER SHED

FIGURE 4.0 - SCALE NTS OCTOBER 2012



BLACKWOLF STAGE 2 -STORM WATER MANAGEMENT AND CONNECTIONS


FIGURE 5.0 - SCALE NTS OCTOBER 2012

BLACKWOLF STAGE 2 OUTLINE PLAN

City of Lethbridge Outline Plan – Gated Review Process Sign-Off Template **Stantec Consulting Ltd.** Project: BlackWolf Stage 2 Submittal Date: December 20, 2013

GATE 3 – Initial Concept

File: 112945510

1. Confirm Previous Gate

• Gate 2 completed and signed off on November 16, 2012

2. Refined Land Use Plan

- Figure 2.1 Area Context Plan
- Figure 2.2 Neighbourhood Context Plan
- Figure 2.3 Site Constraints
- Figure 6.1 Open Space Network
- Figure 7.1 Proposed Land Use Designations
- Table 7.,1 Land Use Summary and Statistics

3. Transportation Network Layout and Preliminary Road Classifications

- Figure 9.1 Preliminary Transportation Network
- Figure 9.2 13th Street Arterial Existing Cross Section
- Figure 9.3 13th Street Arterial Proposed Cross Section

4. Contributing Areas

- Figure 11.1 Water Servicing & Connection Points
- Figure 11.2 Sanitary Servicing & Connection Points
- Figure 11.3 Stormwater Management & Connection Points

5. Infrastructure and Transportation Connection Point Details

- Figure 6.1 Open Space Network
- Figure 9.1 Preliminary Transportation Network
- Figure 9.3 13th Street Arterial Proposed Cross Section
- Figure 11.1 Water Servicing & Connection Points
- Figure 11.2 Sanitary Servicing & Connection Points
- Figure 11.3 Stormwater Management & Connection Points

6. Preliminary Sewage Generation, Storm Pond Size, Storm Overland Routes

- Figure 11.1 Water Servicing & Connection Points
- Figure 11.2 Sanitary Servicing & Connection Points
- Figure 11.3 Stormwater Management & Connection Points
- Table 11.1 Estimated Water Demands
- Table 11.2 Sanitary Sewage Flow Estimates
- Table 11.3 Pond Statistics
- Table 11.4 Minor & Major Storm Flows
- Refer to Section 11.0 Site Servicing for further details

7. Future Servicing Area

- Sanitary Sewer Future sanitary sewer extensions will be extended from Scenic Drive North
- Water Future water distribution and looping will be from Scenic Drive North and 44th Avenue North
- Stormwater Management Stormwater management from areas north of BlackWolf Stage 2 may be accommodated by Scenic Drive storm trunk as an interim solution. Ultimately stormwater will be managed by a future outfall for lands north of BlackWolf Stage 2

Gate 3 Sign-off

City of Lethbridge

Barrv Peat Print Name Januarv 6. 2014 Date

Gate 3 Sign-off

Real Estate and Land Development

7013 Date Print Name